313 research outputs found
Adolescent brain maturation and cortical folding: evidence for reductions in gyrification
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development
Glutathione and glutamate in schizophrenia: a 7T MRS study
In schizophrenia, abnormal neural metabolite concentrations may arise from cortical damage following neuroinflammatory processes implicated in acute episodes. Inflammation is associated with increased glutamate, whereas the antioxidant glutathione may protect against inflammation-induced oxidative stress. We hypothesized that patients with stable schizophrenia would exhibit a reduction in glutathione, glutamate and/or glutamine in the cerebral cortex, consistent with a postinflammatory response, and that this reduction would be most marked in patients with residual schizophrenia an early stage with positive psychotic symptoms has progressed to a late stage characterised by long-term negative symptoms and impairments. We recruited 28 patients with stable schizophrenia and 45 healthy participants matched for age, gender and parental socio-economic status. We measured glutathione, glutamate and glutamine concentrations in the anterior cingulate cortex (ACC), left insula, and visual cortex using 7T proton Magnetic Resonance Spectroscopy (MRS). Glutathione and glutamate were significantly correlated in all three voxels. Glutamine concentrations across the three voxels were significantly correlated with each other. Principal Components Analysis (PCA) produced three clear components: an ACC glutathione-glutamate component; an insula-visual glutathione-glutamate component; and a glutamine component. Patients with stable schizophrenia had significantly lower scores on the ACC glutathione-glutamate component, an effect almost entirely leveraged by the sub-group of patients with residual schizophrenia. All three metabolite concentration values in the ACC were significantly reduced in this group. These findings are consistent with the hypothesis that excito-toxicity during the acute phase of illness leads to reduced glutathione and glutamate in the residual phase of the illness
Multi organ assessment of compensated cirrhosis patients using quantitative magnetic resonance imaging
Background and Aims: Advancing liver disease results in deleterious changes in a number of critical organs. The ability to measure structure, blood flow and tissue perfusion within multiple organs in a single scan has implications for determining the balance of benefit versus harm for therapies. Our aim was to establish the feasibility of Magnetic Resonance Imaging to assess changes in compensated cirrhosis (CC), and relate this to disease severity and future liver related outcomes (LROs).
Methods: 60 CC patients, 40 healthy volunteers and 7 decompensated cirrhotics were recruited. In a single scan session, MRI measures comprised phase-contrast MRI vessel blood flow, arterial spin labelling tissue perfusion, T1 longitudinal relaxation time and volume assessment of liver, spleen and kidneys, heart rate and cardiac index. We explore MRI parameters with disease severity and differences in baseline MRI parameters in those 11 (18%) of CC patients who had future LROs.
Results: In the liver compositional changes were reflected by increased T1 in progressive disease (p<0.001) and an increase in liver volume in CC (p=0.006), with associated progressive reduction in liver (p < 0.001) and splenic (p<0.001) perfusion. A significant reduction in renal cortex T1 and increase in cardiac index and superior mesenteric arterial (SMA) blood flow was seen with increasing disease severity. Baseline liver T1 (p=0.01) and perfusion (p< 0.01), and renal cortex T1 (p<0.01) were significantly different in CC patients who subsequently developed negative LROs.
Conclusions: MRI allows the contemporaneous assessment of organs in liver cirrhosis in a single scan without the requirement of contrast agent. MRI parameters of liver T1, renal T1, hepatic and splenic perfusion, and SMA blood flow were related to risk of LROs
Oxytocin affects the connectivity of the precuneus and the amygdala: A randomized, double-blinded, placebo-controlled neuroimaging trial
© The Author 2015. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]: Although oxytocin is one of the most widely studied neuropeptides in recent times, the mechanistic process by which it modulates social-affective behavior in the brain is not yet clearly understood. Thus, to understand the neurophysiological basis of oxytocin effects, we used resting-state functional MRI to examine the effects of intranasal oxytocin on brain connectivity in healthy males.; Methods: Using a randomized, double-blinded, placebo-controlled, crossover design, 15 healthy male volunteers received 24 IU intranasal oxytocin or placebo prior to resting-state functional MRI acquisition at 3T.; Results: We found that oxytocin significantly reduced the degree centrality of the right precuneus (P<.05). Oxytocin also reduced connectivity between the bilateral amygdalae and between the right precuneus and the right and left amygdala (P<.05). Although there were no significant changes in regional homogeneity at the whole brain level, posthoc results showed a reduction involving the right precuneus (P<.05).; Conclusions: These results show that oxytocin affects one of the key centers in the brain for social cognition and introspective processing, the precuneus, and enhances our understanding of how oxytocin can modulate brain networks at rest. An improved understanding of the neurophysiological effects of oxytocin can be important in terms of evaluating the mechanisms that are likely to underlie the clinical responses observed upon long-term oxytocin administration.; © The Author 2015. Published by Oxford University Press on behalf of CINP.https://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyu05
Schizophrenia syndrome due to C9ORF72 mutation case report: a cautionary tale and role of hybrid brain imaging!
Background: Frontal variant frontotemporal dementia is a common cause of presenile dementia. A hexanucleotide expansion on chromosome 9 has recently been recognized as the most common genetic mutation cause of this illness. This sub-type tends to present psychiatrically with psychosis being a common presenting symptom before the onset of cognitive changes or brain atrophy. A few case series have been published describing the prominence of early psychotic symptoms, and lack of clear brain atrophy on clinical brain imaging imposing a challenge in reaching early accurate diagnosis. In this report, we present a case whereby the diagnosis of Schizophrenia syndrome was made and the patient was treated for years with multiple interventions for that syndrome before reaching the accurate diagnosis of Frontal variant frontotemporal dementia due to hexanucleotide expansion on chromosome 9. This diagnosis was confirmed after genetic testing and findings on a hybrid Positron Emission Tomography/Magnetic Resonance Imaging scanning. Case summary: A 60-year-old female diagnosed with schizophrenia at age 50 after presenting with delusions and hallucinations, which proved to be refractor to several lines of pharmacological and non-pharmacological interventions including electroconvulsive therapy. Patient had a history of post-partum psychosis in her 20s. She was referred to cognitive neurology due to progressive decline in function. While clinical structural brain imaging data were not adequate to support an alternative neurological diagnosis, careful inquiry elicited a history of psychotic illness followed by progressive decline in a sister. Genetic testing confirmed hexanucleotide expansion on chromosome 9 mutation. The patient was offered a state-of-the-art FD-Glucose Positron Emission Tomography/Magnetic Resonance Imaging scan available at our centre. While volumetric Magnetic Resonance Imaging scan did not show volume loss in frontotemporal areas, the hybrid scan showed regionally specific deficit in FD-Glucose Positron Emission Tomography affecting medial superior frontal, insula, inferior temporal, thalamus, and anterior cingulate cortex consistent with behavioral variant frontotemporal dementia. Conclusions: This case highlights the importance of considering Frontal variant frontotemporal dementia due to hexanucleotide expansion on chromosome 9 when facing relatively late-onset, refractory schizophrenia-like syndrome. Careful history from all available sources to elicit family history of similar presentation is very important. Genetic testing and functional brain imaging can aid in confirming the diagnosis and potentially streamlining the management of these cases
Brain Structural Networks Associated with Intelligence and Visuomotor Ability
Increasing evidence indicates that multiple structures in the brain are associated with intelligence
and cognitive function at the network level. The association between the grey matter (GM) structural
network and intelligence and cognition is not well understood. We applied a multivariate approach
to identify the pattern of GM and link the structural network to intelligence and cognitive functions.
Structural magnetic resonance imaging was acquired from 92 healthy individuals. Source-based
morphometry analysis was applied to the imaging data to extract GM structural covariance. We
assessed the intelligence, verbal fluency, processing speed, and executive functioning of the
participants and further investigated the correlations of the GM structural networks with intelligence
and cognitive functions. Six GM structural networks were identified. The cerebello-parietal component
and the frontal component were significantly associated with intelligence. The parietal and frontal
regions were each distinctively associated with intelligence by maintaining structural networks with
the cerebellum and the temporal region, respectively. The cerebellar component was associated
with visuomotor ability. Our results support the parieto-frontal integration theory of intelligence by
demonstrating how each core region for intelligence works in concert with other regions. In addition,
we revealed how the cerebellum is associated with intelligence and cognitive functions
Ultra-bright gamma-ray emission and dense positron production from two laser-driven colliding foils
Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e −e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ∼ 1024 Wcm−2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 1022−23 Wcm−2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ∼ 1025 photons/s/mm2 /mrad2 /0.1%BW at 15 MeV and intensity of 5×1023 Wcm−2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5×1022 cm−3 and flux of 1.6×1010/shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities
- …
