2,052 research outputs found
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV
energies raises the question of which astrophysical sources generate this
signal. One class of extragalactic sources which may produce such high-energy
neutrinos are blazars. We present a likelihood analysis searching for
cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue
(2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the
detection of individual sources. In contrast to previous searches with IceCube,
the populations investigated contain up to hundreds of sources, the largest one
being the entire blazar sample in the 2LAC catalogue. No significant excess is
observed and upper limits for the cumulative flux from these populations are
obtained. These constrain the maximum contribution of the 2LAC blazars to the
observed astrophysical neutrino flux to be or less between around 10
TeV and 2 PeV, assuming equipartition of flavours at Earth and a single
power-law spectrum with a spectral index of . We can still exclude that
the 2LAC blazars (and sub-populations) emit more than of the observed
neutrinos up to a spectral index as hard as in the same energy range.
Our result takes into account that the neutrino source count distribution is
unknown, and it does not assume strict proportionality of the neutrino flux to
the measured 2LAC -ray signal for each source. Additionally, we
constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
Neutrinos and Cosmic Rays Observed by IceCube
The core mission of the IceCube Neutrino observatory is to study the origin
and propagation of cosmic rays. IceCube, with its surface component IceTop,
observes multiple signatures to accomplish this mission. Most important are the
astrophysical neutrinos that are produced in interactions of cosmic rays, close
to their sources and in interstellar space. IceCube is the first instrument
that measures the properties of this astrophysical neutrino flux, and
constrains its origin. In addition, the spectrum, composition and anisotropy of
the local cosmic-ray flux are obtained from measurements of atmospheric muons
and showers. Here we provide an overview of recent findings from the analysis
of IceCube data, and their implications on our understanding of cosmic rays.Comment: Review article, to appear in Advances in Space Research, special
issue "Origins of Cosmic Rays
Search for astrophysical sources of neutrinos using cascade events in IceCube
The IceCube neutrino observatory has established the existence of a flux of
high-energy astrophysical neutrinos inconsistent with the expectation from
atmospheric backgrounds at a significance greater than . This flux has
been observed in analyses of both track events from muon neutrino interactions
and cascade events from interactions of all neutrino flavors. Searches for
astrophysical neutrino sources have focused on track events due to the
significantly better angular resolution of track reconstructions. To date, no
such sources have been confirmed. Here we present the first search for
astrophysical neutrino sources using cascades interacting in IceCube with
deposited energies as small as 1 TeV. No significant clustering was observed in
a selection of 263 cascades collected from May 2010 to May 2012. We show that
compared to the classic approach using tracks, this statistically-independent
search offers improved sensitivity to sources in the southern sky, especially
if the emission is spatially extended or follows a soft energy spectrum. This
enhancement is due to the low background from atmospheric neutrinos forming
cascade events and the additional veto of atmospheric neutrinos at declinations
.Comment: 14 pages, 9 figures, 1 tabl
Detection of the temporal variation of the sun's cosmic ray shadow with the IceCube detector
We report on the observation of a deficit in the cosmic ray flux from the directions of the Moon and Sun with five years of data taken by the IceCube Neutrino Observatory. Between 2010 May and 2011 May the IceCube detector operated with 79 strings deployed in the glacial ice at the South Pole, and with 86 strings between 2011 May and 2015 May. A binned analysis is used to measure the relative deficit and significance of the cosmic ray shadows. Both the cosmic ray Moon and Sun shadows are detected with high statistical significance (> 10 sigma) for each year. The results for the Moon shadow are consistent with previous analyses and verify the stability of the IceCube detector over time. This work represents the first observation of the Sun shadow with the IceCube detector. We show that the cosmic ray shadow of the Sun varies with time. These results make it possible to study cosmic ray transport near the Sun with future data from IceCube
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
Lowering IceCube’s energy threshold for point source searches in the southern sky
Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background
Searches for sterile neutrinos with the IceCube detector
The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous nu(mu) or (nu) over bar (mu) disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3 + 1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin(2)2 theta(24) <= 0.02 at Delta m(2) similar to 0.3 eV(2) at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of vertical bar U-e4 vertical bar(2)
- …
