2,692 research outputs found
Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals <i>SNORA55</i> as a driver of prostate cancer progression
Metastasis is the primary cause of death in prostate cancer (PCa) patients. Small nucleolar RNAs (snoRNAs) have long been considered "housekeeping" genes with no relevance for cancer biology. Emerging evidence has challenged this assumption, suggesting that snoRNA expression is frequently modulated during cancer progression. Despite this, no study has systematically addressed the prognostic and functional significance of snoRNAs in PCa. We performed RNA Sequencing on paired metastatic/non-metastatic PCa xenografts derived from clinical specimens. The clinical significance of differentially expressed snoRNAs was further investigated in two independent primary PCa cohorts (131 and 43 patients, respectively). The snoRNA demonstrating the strongest association with clinical outcome was quantified in PCa patient-derived serum samples and its functional relevance was investigated in PCa cells via gene expression profiling, pathway analysis and gene silencing. Our comparison revealed 21 differentially expressed snoRNAs in the metastatic vs. non-metastatic xenografts. Of those, 12 were represented in clinical databases and were further analyzed. SNORA55 emerged as a predictor of shorter relapse-free survival (results confirmed in two independent databases). SNORA55 was reproducibly detectable in serum samples from PCa patients. SNORA55 silencing in PCa cell lines significantly inhibited cell proliferation and migration. Pathway analysis revealed that SNORA55 expression is significantly associated with growth factor signaling and pro-inflammatory cytokine expression in PCa. Our results demonstrate that SNORA55 up-regulation predicts PCa progression and that silencing this non-coding gene affects PCa cell proliferation and metastatic potential, thus positioning it as both a novel biomarker and therapeutic target
Intracanal placement of calcium hydroxide: a comparison of specially designed paste carrier technique with other techniques
Utjecaj hijaluronske kiseline, kalcijeva hidroksida i dentinskih adheziva na odontoblaste i fibroblaste štakora
The aim of this study was to investigate the effects and efficiency of pulp capping preparations based on hyaluronic acid, calcium hydroxide, and dentin adhesive on the pulp tissue of Sprague-Dawley rats. The rats were killed and extracted teeth sectioned transversely through the pulp. The slices were placed in a RPMI 1640 cell culture medium supplemented with 10 % foetal calf serum. During 14 days of cultivation cultures were treated with preparations that contained hyaluronic acid (Gengigel Prof®), and calcium hydroxide (ApexCal®), or with dentin adhesive (Excite®). Cellularity and viability of fibroblasts and odontoblasts was analysed using a haemocytometer. Hyaluronic acid proved most efficient and the least toxic for direct pulp capping. Even though calcium hydroxide and dentin adhesive demonstrated a higher degree of cytotoxicity, their effects were still acceptable in terms of biocompatibility.Cilj ovog rada bio je istražiti djelovanje preparata na bazi hijaluronske kiseline i kalcijeva hidroksida te dentinskog adheziva na pulpno tkivo Sprague-Dawley štakora u svrhu procjene učinkovitosti navedenih materijala kod direktnog prekrivanja pulpe. Izvađeni zubi transverzalno su podijeljeni kroz pulpu. Naresci su uzgajani u RPMI 1640 staničnom mediju obogaćenom s 10 % fetalnoga telećeg seruma u plastičnim bočicama za staničnu kulturu. Kulture su tijekom 14 dana tretirane preparatima s hijaluronskom kiselinom (Gengigel Prof®), kalcijevim hidroksidom (ApexCal®) i dentinskim adhezivom (Excite®). Nakon 14 dana pristupilo se analizi staničnosti i vijabilnosti s pomoću hemocitometra. Iako su preparati na bazi kalcijeva
hidroksida i dentinski adheziv pokazali nešto viši stupanj citotoksičnosti, dobiveni su rezultati u granicama biokompatibilnosti. Primjena preparata na bazi hijaluronske kiseline postigla je najbolje rezultate te se ovaj materijal pokazao najboljim za direktno prekrivanje pulpe između tri ispitivana preparata
Immediate natural tooth bridges
This article describes four cases in which immediate natural tooth bridges have been provided. Four different techniques are described for creating these. The four different retainer types discussed are silanated glass fibres impregnated with PMMA and bis-GMA, laboratory-made metal wings, metal mesh and mesh-type titanium wire. With the support of photographs and diagrams, the techniques for each retainer type are described. The final section of this article discusses the factors that affect the prognosis of immediate natural tooth bridges. Providing information on prognosis is an important part of the consent process; this includes patient factors and clinician factors
Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker
During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 10 n/cm. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker
Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation
The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×10 cms. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment
Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC
The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip
Search for a resonance decaying to a W boson and a photon in proton-proton collisions at = 13 TeV using leptonic W boson decays
A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb−1. Particle X has electric charge ±1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)
- …
