99 research outputs found
Evaluation of free radical scavenging activity of Neiebuhria apetala DUNN leaf extracts
The present investigation is to assess the antioxidant properties of leaf extracts of Neiebuhria apetala using different in vitro methods. The antioxidant activity was studied by DPPH radical scavenging method, hydroxyl radical scavenging activity, superoxide radical scavenging activity, ABTS radical scavenging activity and reducing power methods. Ethanol extract of leaf showed very good antioxidant properties. The present study exposed that ethanol extract of N. apetala include effective potential source of natural antioxidant, which might be useful in preventing the progress of various oxidative stresses.
 
N′-[(1E)-3-Bromo-5-chloro-2-hydroxybenzylidene]-4-tert-butylbenzohydrazide ethanol monosolvate
In the title compound, C18H18BrClN2O2·C2H6O, the hydroxy group forms an intramolecular O—H⋯N hydrogen bond, which influences the conformation of the Shiff base molecule, where the two aromatic rings form a dihedral angle of 21.67 (8)°. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds link two Shiff base molecules and two solvent molecules into a centrosymmetric heterotetramer. Weak intermolecular C—H⋯O interactions link further tetramers related by translation along the a axis into chains
(E)-N′-(3-Bromo-5-chloro-2-hydroxybenzylidene)nicotinohydrazide
There are two independent molecules in the asymmetric unit of the title compound, C13H9BrClN3O2, in which the dihedral angles between the benzene and pyridine rings are 8.23 (9)° and 52.84 (12)°. Both the molecules exist in an E configuration with respect to the C=N double bond. The two molecules in the asymmetric unit are linked via weak C—H⋯O hydrogen bonds. In both the molecules, an intramolecular O—H⋯N hydrogen bond generate an S(6) graph-set motif. In the crystal, intermolecular N—H⋯O and C—H⋯O hydrogen bonds generate bifurcated R
1
2(7) ring motifs. The crystal packing is further stabilized by weak intermolecular N—H⋯O, N—H⋯N, C—H⋯O and π–π [centroid–centroid distance 3.615 (2) Å] interactions
The impact of outpatient <i>versus</i> inpatient management on health-related quality of life outcomes for patients with malignant pleural effusion: the OPTIMUM randomised clinical trial
Background: The principal aim of malignant pleural effusion (MPE) management is to improve health-related quality of life (HRQoL) and symptoms.Methods: In this open-label randomised controlled trial, patients with symptomatic MPE were randomly assigned to either indwelling pleural catheter (IPC) insertion with the option of talc pleurodesis or chest drain and talc pleurodesis. The primary end-point was global health status, measured with the 30-item European Organisation for Research and Treatment of Cancer Quality of Life Core Questionnaire (EORTC QLQ-C30) at 30 days post-intervention. 142 participants were enrolled from July 2015 to December 2019.Results: Of participants randomly assigned to the IPC (n=70) and chest drain (n=72) groups, primary outcome data were available in 58 and 56 patients, respectively. Global health status improved in both groups at day 30 compared with baseline: IPC (mean difference 13.11; p=0.001) and chest drain (mean difference 10.11; p=0.001). However, there was no significant between-group difference at day 30 (mean intergroup difference in baseline-adjusted global health status 2.06, 95% CI −5.86–9.99; p=0.61), day 60 or day 90. No significant differences were identified between groups in breathlessness and chest pain scores. All chest drain arm patients were admitted (median length of stay 4 days); seven patients in the IPC arm required intervention-related hospitalisation.Conclusions: While HRQoL significantly improved in both groups, there were no differences in patient-reported global health status at 30 days. The outpatient pathway using an IPC was not superior to inpatient treatment with a chest drain
Australasian Malignant PLeural Effusion (AMPLE)-3 trial: Study protocol for a multi-centre randomised study comparing indwelling pleural catheter (±talc pleurodesis) versus video-assisted thoracoscopic surgery for management of malignant pleural effusion
Introduction: Malignant pleural effusions (MPEs) are common. MPE causes significant breathlessness and impairs quality of life. Indwelling pleural catheters (IPC) allow ambulatory drainage and reduce hospital days and re-intervention rates when compared to standard talc slurry pleurodesis. Daily drainage accelerates pleurodesis, and talc instillation via the IPC has been proven feasible and safe. Surgical pleurodesis via video-assisted thoracoscopic surgery (VATS) is considered a one-off intervention for MPE and is often recommended to patients who are fit for surgery. The AMPLE-3 trial is the first randomised trial to compare IPC (±talc pleurodesis) and VATS pleurodesis in those who are fit for surgery. Methods and analysis: A multi-centre, open-labelled randomised trial of patients with symptomatic MPE, expected survival of ≥ 6 months and good performance status randomised 1:1 to either IPC or VATS pleurodesis. Participant randomisation will be minimised for (i) cancer type (mesothelioma vs non-mesothelioma); (ii) previous pleurodesis (vs not); and (iii) trapped lung, if known (vs not). Primary outcome is the need for further ipsilateral pleural interventions over 12 months or until death, if sooner. Secondary outcomes include days in hospital, quality of life (QoL) measures, physical activity levels, safety profile, health economics, adverse events, and survival. The trial will recruit 158 participants who will be followed up for 12 months. Ethics and dissemination: Sir Charles Gairdner and Osborne Park Health Care Group (HREC) has approved the study (reference: RGS356). Results will be published in peer-reviewed journals and presented at scientific meetings. Discussion: Both IPC and VATS are commonly used procedures for MPE. The AMPLE-3 trial will provide data to help define the merits and shortcomings of these procedures and inform future clinical care algorithms. Trial registration: Australia New Zealand Clinical Trial Registry ACTRN12618001013257. Registered on 18 June 2018. Protocol version: Version 3.00/4.02.1
Using creative co-design to develop a decision support tool for people with malignant pleural effusion
Abstract: Background: Malignant pleural effusion (MPE) is a common, serious problem predominantly seen in metastatic lung and breast cancer and malignant pleural mesothelioma. Recurrence of malignant pleural effusion is common, and symptoms significantly impair people’s daily lives. Numerous treatment options exist, yet choosing the most suitable depends on many factors and making decisions can be challenging in pressured, time-sensitive clinical environments. Clinicians identified a need to develop a decision support tool. This paper reports the process of co-producing an initial prototype tool. Methods: Creative co-design methods were used. Three pleural teams from three disparate clinical sites in the UK were involved. To overcome the geographical distance between sites and the ill-health of service users, novel distributed methods of creative co-design were used. Local workshops were designed and structured, including video clips of activities. These were run on each site with clinicians, patients and carers. A joint national workshop was then conducted with representatives from all stakeholder groups to consider the findings and outputs from local meetings. The design team worked with participants to develop outputs, including patient timelines and personas. These were used as the basis to develop and test prototype ideas. Results: Key messages from the workshops informed prototype development. These messages were as follows. Understanding and managing the pleural effusion was the priority for patients, not their overall cancer journey. Preferred methods for receiving information were varied but visual and graphic approaches were favoured. The main influences on people’s decisions about their MPE treatment were personal aspects of their lives, for example, how active they are, what support they have at home. The findings informed the development of a first prototype/service visualisation (a video representing a web-based support tool) to help people identify personal priorities and to guide shared treatment decisions. Conclusion: The creative design methods and distributed model used in this project overcame many of the barriers to traditional co-production methods such as power, language and time. They allowed specialist pleural teams and service users to work together to create a patient-facing decision support tool owned by those who will use it and ready for implementation and evaluation
Crop–livestock-integrated farming system: a strategy to achieve synergy between agricultural production, nutritional security, and environmental sustainability
IntroductionClimate change, nutritional security, land shrinkage, and an increasing human population are the most concerning factors in agriculture, which are further complicated by deteriorating soil health. Among several ways to address these issues, the most prominent and cost-effective means is to adopt an integrated farming system (IFS). Integrating farming systems with livestock enables a way to increase economic yield per unit area per unit of time for farmers in small and marginal categories. This system effectively utilizes the waste materials by recycling them via linking appropriate components, thereby minimizing the pollution caused to the environment. Further integrating livestock components with crops and the production of eggs, meat, and milk leads to nutritional security and stable farmer's income generation. So, there is a dire need to develop an eco-friendly, ecologically safe, and economically profitable IFS model.MethodsAn experiment was conducted to develop a crop–livestock-based integrated farming system model for the benefit of irrigated upland farmers in the semi-arid tropics for increasing productivity, farm income, employment generation, and food and nutritional security through efficient utilization of resources in the farming system.Results and discussionThe IFS model has components, viz., crop (0.85 ha) + horticulture (0.10 ha) + 2 cattles along with 2 calves in dairy (50 m2) + 12 female goats and 1 male goat (50 m2) + 150 numbers of poultry birds (50 m2) + vermicompost (50 m2) + kitchen garden (0.02 ha) + boundary planting + supporting activities (0.01 ha) in a one-hectare area. The model recorded a higher total MEY (162.31 t), gross return (689,773), net return (317,765), and employment generation (475 mandays). Further negative emissions of −15,118 CO2-e (kg) greenhouse gases were recorded under this model. The study conclusively reveals that integration of crop, horticulture, dairy, goat, poultry, vermicompost production, kitchen garden, and boundary planting models increases the net returns, B:C ratio, employment generation, nutritional security, and livelihoods of small and marginal farmers
Safety of indwelling pleural catheter use in patients undergoing chemotherapy: a five-year retrospective evaluation
- …
