1,790 research outputs found

    Single-cell transcriptomics : a high-resolution avenue for plant functional genomics

    Get PDF
    Plant function is the result of the concerted action of single cells in different tissues. Advances in RNA-seq technologies and tissue processing allow us now to capture transcriptional changes at single-cell resolution. The incredible potential of single-cell RNA-seq lies in the novel ability to study and exploit regulatory processes in complex tissues based on the behaviour of single cells. Importantly, the independence from reporter lines allows the analysis of any given tissue in any plant. While there are challenges associated with the handling and analysis of complex datasets, the opportunities are unique to generate knowledge of tissue functions in unprecedented detail and to facilitate the application of such information by mapping cellular functions and interactions in a plant cell atlas. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Bayesian detection of unmodeled bursts of gravitational waves

    Full text link
    The data analysis problem of coherently searching for unmodeled gravitational-wave bursts in the data generated by a global network of gravitational-wave observatories has been at the center of research for almost two decades. As data from these detectors is starting to be analyzed, a renewed interest in this problem has been sparked. A Bayesian approach to the problem of coherently searching for gravitational wave bursts with a network of ground-based interferometers is here presented. We demonstrate how to systematically incorporate prior information on the burst signal and its source into the analysis. This information may range from the very minimal, such as best-guess durations, bandwidths, or polarization content, to complete prior knowledge of the signal waveforms and the distribution of sources through spacetime. We show that this comprehensive Bayesian formulation contains several previously proposed detection statistics as special limiting cases, and demonstrate that it outperforms them.Comment: 18 pages, 3 figures, revisions based on referee comment

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201
    corecore