1,363 research outputs found
The electric double layer has a life of its own
Using molecular dynamics simulations with recently developed importance
sampling methods, we show that the differential capacitance of a model ionic
liquid based double-layer capacitor exhibits an anomalous dependence on the
applied electrical potential. Such behavior is qualitatively incompatible with
standard mean-field theories of the electrical double layer, but is consistent
with observations made in experiment. The anomalous response results from
structural changes induced in the interfacial region of the ionic liquid as it
develops a charge density to screen the charge induced on the electrode
surface. These structural changes are strongly influenced by the out-of-plane
layering of the electrolyte and are multifaceted, including an abrupt local
ordering of the ions adsorbed in the plane of the electrode surface,
reorientation of molecular ions, and the spontaneous exchange of ions between
different layers of the electrolyte close to the electrode surface. The local
ordering exhibits signatures of a first-order phase transition, which would
indicate a singular charge-density transition in a macroscopic limit
Study of the acoustic signature of UHE neutrino interactions in water and ice
The production of acoustic signals from the interactions of ultra-high energy
(UHE) cosmic ray neutrinos in water and ice has been studied. A new
computationally fast and efficient method of deriving the signal is presented.
This method allows the implementation of up to date parameterisations of
acoustic attenuation in sea water and ice that now includes the effects of
complex attenuation, where appropriate. The methods presented here have been
used to compute and study the properties of the acoustic signals which would be
expected from such interactions. A matrix method of parameterising the signals,
which includes the expected fluctuations, is also presented. These methods are
used to generate the expected signals that would be detected in acoustic UHE
neutrino telescopes.Comment: 21 pages and 13 figure
Fragmentation and dewatering transform Great Plains stream fish communities
Citation: Perkin, J. S., Gido, K. B., Cooper, A. R., Turner, T. F., Osborne, M. J., Johnson, E. R., & Mayes, K. B. (2015). Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 85(1), 73-92. doi:10.1890/14-0121.1Biodiversity in stream networks is threatened globally by interactions between habitat fragmentation and altered hydrologic regimes. In the Great Plains of North America, stream networks are fragmented by >19000 anthropogenic barriers, and flow regimes are altered by surface water retention and groundwater extraction. We documented the distribution of anthropogenic barriers and dry stream segments in five basins covering the central Great Plains to assess effects of broad-scale environmental change on stream fish community structure and distribution of reproductive guilds. We used an information-theoretic approach to rank competing models in which fragmentation, discharge magnitude, and percentage of time streams had zero flow (a measure of desiccation) were included to predict effects of environmental alterations on the distribution of fishes belonging to different reproductive guilds. Fragmentation caused by anthropogenic barriers was most common in the eastern Great Plains, but stream desiccation became more common to the west, where rivers are underlain by the depleted (i.e., extraction > recharge) High Plains Aquifer. Longitudinal gradients in fragmentation and desiccation contributed to spatial shifts in community structure from taxonomically and functionally diverse communities dominated by pelagic reproductive guilds where fragmentation and desiccation were least, to homogenized communities dominated by benthic guilds where fragmentation and desiccation were common. Modeling results revealed these shifts were primarily associated with decline of pelagic reproductive guilds, notably small-bodied pelagophilic and lithopelagophilic fishes that declined in association with decreased fragment length and increased number of days with zero flow. Graph theory combined with a barrier prioritization approach revealed specific fragments that could be reconnected to allow fishes within these guilds to colonize currently unoccupied fragments with the mitigation or removal of small dams (<10 m height). These findings are useful for natural resource managers charged with halting or reversing the prevailing pattern of declining fish diversity in the Great Plains. Our study represents one of the most comprehensive assessments of fish diversity responses to broad-scale environmental change in the Great Plains and provides a conservation strategy for addressing the simultaneous contributions of fragmentation and flow alteration to the global freshwater biodiversity crisis
A Graphene Surface Force Balance
We report a method for transferring graphene, grown
by chemical vapor deposition, which produces ultraflat graphene
surfaces (root-mean-square roughness of 0.19 nm) free from
polymer residues over macroscopic areas (>1 cm2). The critical
step in preparing such surfaces involves the use of an intermediate
mica template, which itself is atomically smooth. We demonstrate
the compatibility of these model surfaces with the surface force
balance, opening up the possibility of measuring normal and lateral
forces, including friction and adhesion, between two graphene sheets
either in contact or across a liquid medium. The conductivity of the
graphene surfaces allows forces to be measured while controlling the
surface potential. This new apparatus, the graphene surface force
balance, is expected to be of importance to the future understanding
of graphene in applications from lubrication to electrochemical energy storage systems
Partially Annealed Disorder and Collapse of Like-Charged Macroions
Charged systems with partially annealed charge disorder are investigated
using field-theoretic and replica methods. Charge disorder is assumed to be
confined to macroion surfaces surrounded by a cloud of mobile neutralizing
counterions in an aqueous solvent. A general formalism is developed by assuming
that the disorder is partially annealed (with purely annealed and purely
quenched disorder included as special cases), i.e., we assume in general that
the disorder undergoes a slow dynamics relative to fast-relaxing counterions
making it possible thus to study the stationary-state properties of the system
using methods similar to those available in equilibrium statistical mechanics.
By focusing on the specific case of two planar surfaces of equal mean surface
charge and disorder variance, it is shown that partial annealing of the
quenched disorder leads to renormalization of the mean surface charge density
and thus a reduction of the inter-plate repulsion on the mean-field or
weak-coupling level. In the strong-coupling limit, charge disorder induces a
long-range attraction resulting in a continuous disorder-driven collapse
transition for the two surfaces as the disorder variance exceeds a threshold
value. Disorder annealing further enhances the attraction and, in the limit of
low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam
A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors
located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This
new SBN Program will deliver a rich and compelling physics opportunity,
including the ability to resolve a class of experimental anomalies in neutrino
physics and to perform the most sensitive search to date for sterile neutrinos
at the eV mass-scale through both appearance and disappearance oscillation
channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND
and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we
estimate that a search for muon neutrino to electron neutrino appearance can be
performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter
region. In this proposal for the SBN Program, we describe the physics analysis,
the conceptual design of the LAr1-ND detector, the design and refurbishment of
the T600 detector, the necessary infrastructure required to execute the
program, and a possible reconfiguration of the BNB target and horn system to
improve its performance for oscillation searches.Comment: 209 pages, 129 figure
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
- …
