1,865 research outputs found

    Electromagnetic Fields of Slowly Rotating Magnetized Gravastars

    Full text link
    We study the dipolar magnetic field configuration and present solutions of Maxwell equations in the internal background spacetime of a a slowly rotating gravastar. The shell of gravastar where magnetic field penetrated is modeled as sphere consisting of perfect highly magnetized fluid with infinite conductivity. Dipolar magnetic field of the gravastar is produced by a circular current loop symmetrically placed at radius aa at the equatorial plane.Comment: 5 pages, 2 figures, accepted for publication to Mod. Phys. Lett.

    Developing fibre optic Raman probes for applications in clinical spectroscopy

    Get PDF
    Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy

    The evolution of a supermassive binary caused by an accretion disc

    Full text link
    The interaction of a massive binary and a non-self-gravitating circumbinary accretion disc is considered. The shape of the stationary twisted disc produced by the binary is calculated. It is shown that the inner part of the disc must lie in the binary orbital plane for any value of viscosity. When the inner disc midplane is aligned with the binary orbital plane on the scales of interest and it rotates in the same sense as the binary, the modification of the disc structure and the rate of decay of the binary orbit, assumed circular, due to tidal exchange of angular momentum with the disc, are calculated. It is shown that the modified disc structure is well described by a self-similar solution of the non-linear diffusion equation governing the evolution of the disc surface density. The calculated time scale for decay of the binary orbit is always smaller than the "accretion" time tacc=m/M˙t_{acc}=m/{\dot M} (mm is the mass of the secondary component, and M˙\dot M is the disc accretion rate), and is determined by ratio of secondary mass mm, assumed to be much smaller than the primary mass, the disc mass inside the initial binary orbit, and the form of viscosity in the disc.Comment: to be published in MNRA

    Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    Get PDF
    The study compared the effect of four either fresh or force oxidized organic plant oils in diets for juvenile rainbow trout (Oncorhynchus mykiss) in which 47% of conventional LT fish meal protein was substituted by a mixture of 3 organic plant protein concentrates. Fish oil was completely substituted with either organic linseed oil; rape seed oil; sunflower oil or grape seed oil and evaluated based on feed intake, feed utilization, growth and digestibility. None of the plant oils affected feed intake and growth parameters. Organic plant oils had all a positive effect on lipid digestibility as compared with the fish oil based control diet, despite the very different FA profiles. The organic vegetable oils did not undergo autoxidation, as opposed to the fish oil control for which lipid digestibility was significantly negative influenced

    Perturbations on steady spherical accretion in Schwarzschild geometry

    Full text link
    The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur

    Secular instability in quasi-viscous disc accretion

    Get PDF
    A first-order correction in the α\alpha-viscosity parameter of Shakura and Sunyaev has been introduced in the standard inviscid and thin accretion disc. A linearised time-dependent perturbative study of the stationary solutions of this "quasi-viscous" disc leads to the development of a secular instability on large spatial scales. This qualitative feature is equally manifest for two different types of perturbative treatment -- a standing wave on subsonic scales, as well as a radially propagating wave. Stability of the flow is restored when viscosity disappears.Comment: 15 pages, 2 figures, AASTeX. Added some new material and upgraded the reference lis

    Self-gravitating warped discs around supermassive black holes

    Full text link
    We consider warped equilibrium configurations for stellar and gaseous disks in the Keplerian force-field of a supermassive black hole, assuming that the self-gravity of the disk provides the only acting torques. Modeling the disk as a collection of concentric circular rings, and computing the torques in the non-linear regime, we show that stable, strongly warped precessing equilibria are possible. These solutions exist for a wide range of disk-to-black hole mass ratios Md/MbhM_d/M_{bh}, can span large warp angles of up to ±120deg\pm\sim 120\deg, have inner and outer boundaries, and extend over a radial range of a factor of typically two to four. These equilibrium configurations obey a scaling relation such that in good approximation \phidot/\Omega\propto M_d/M_{bh} where \phidot is the (retrograde) precession frequency and Ω\Omega is a characteristic orbital frequency in the disk. Stability was determined using linear perturbation theory and, in a few cases, confirmed by numerical integration of the equations of motion. Most of the precessing equilibria are found to be stable, but some are unstable. The main result of this study is that highly warped disks near black holes can persist for long times without any persistent forcing other than by their self-gravity. The possible relevance of this to galactic nuclei is briefly discussed.Comment: 13 pages, 21 figures, published in MNRA

    On the orbital and physical parameters of the HDE 226868/Cygnus X-1 binary system

    Full text link
    In this paper we explore the consequences of the recent determination of the mass m=(8.7 +/- 0.8)M_Sun of Cygnus X-1, obtained from the Quasi-Periodic Oscillation (QPO)-photon index correlation scaling, on the orbital and physical properties of the binary system HDE 226868/Cygnus X-1. By using such a result and the latest spectroscopic optical data of the HDE 226868 supergiant star we get M=(24 +/- 5)M_Sun for its mass. It turns out that deviations from the third Kepler law significant at more than 1-sigma level would occur if the inclination i of the system's orbital plane to the plane of the sky falls outside the range 41-56 deg: such deviations cannot be due to the first post-Newtonian (1PN) correction to the orbital period because of its smallness; interpreted in the framework of the Newtonian theory of gravitation as due to the stellar quadrupole mass moment Q, they are unphysical because Q would take unreasonably large values. By conservatively assuming that the third Kepler law is an adequate model for the orbital period we obtain i=(48 +/- 7) deg which yields for the relative semimajor axis a=(42 +/- 9)R_Sun. Our estimate for the Roche's lobe of HDE 226868 is r_M = (21 +/- 6)R_Sun.Comment: Latex2e, 7 pages, 1 table, 4 figures. To appear in ApSS (Astrophysics and Space Science

    A Toy Model for Blandford-Znajek Mechanism

    Get PDF
    A toy model for the Blandford-Znajek mechanism is investigated: a Kerr black hole with a toroidal electric current residing in a thin disk around the black hole. The toroidal electric current generates a poloidal magnetic field threading the black hole and disk. Due to the interaction of the magnetic field with remote charged particles, the rotation of the black hole and disk induces an electromotive force, which can power an astrophysical load at remote distance. The power of the black hole and disk is calculated. It is found that, for a wide range of parameters specifying the rotation of the black hole and the distribution of the electric current in the disk, the power of the disk exceeds the power of the black hole. The torque provided by the black hole and disk is also calculated. The torque of the disk is comparable to the torque of the black hole. As the disk loses its angular momentum, the mass of the disk gradually drifts towards the black hole and gets accreted. Ultimately the power comes from the gravitational binding energy between the disk and the black hole, as in the standard theory of accretion disk, instead of the rotational energy of the black hole. This suggests that the Blandford-Znajek mechanism may be less efficient in extracting energy from a rotating black hole with a thin disk. The limitations of our simple model and possible improvements deserved for future work are also discussed.Comment: 16 pages, 4 figures. Accepted for publication in Physical Review

    Implications of nonlinearity for spherically symmetric accretion

    Full text link
    We subject the steady solutions of a spherically symmetric accretion flow to a time-dependent radial perturbation. The equation of the perturbation includes nonlinearity up to any arbitrary order, and bears a form that is very similar to the metric equation of an analogue acoustic black hole. Casting the perturbation as a standing wave on subsonic solutions, and maintaining nonlinearity in it up to the second order, we get the time-dependence of the perturbation in the form of a Li\'enard system. A dynamical systems analysis of the Li\'enard system reveals a saddle point in real time, with the implication that instabilities will develop in the accreting system when the perturbation is extended into the nonlinear regime. The instability of initial subsonic states also adversely affects the temporal evolution of the flow towards a final and stable transonic state.Comment: 14 pages, ReVTeX. Substantially revised with respect to the previous version. Three figures and a new section (Sec. VI) adde
    corecore