1,865 research outputs found
Electromagnetic Fields of Slowly Rotating Magnetized Gravastars
We study the dipolar magnetic field configuration and present solutions of
Maxwell equations in the internal background spacetime of a a slowly rotating
gravastar. The shell of gravastar where magnetic field penetrated is modeled as
sphere consisting of perfect highly magnetized fluid with infinite
conductivity. Dipolar magnetic field of the gravastar is produced by a circular
current loop symmetrically placed at radius at the equatorial plane.Comment: 5 pages, 2 figures, accepted for publication to Mod. Phys. Lett.
Developing fibre optic Raman probes for applications in clinical spectroscopy
Raman spectroscopy has been shown by various groups over the last two decades to have significant capability in discriminating disease states in bodily fluids, cells and tissues. Recent development in instrumentation, optics and manufacturing approaches has facilitated the design and demonstration of various novel in vivo probes, which have applicability for myriad of applications. This review focusses on key considerations and recommendations for application specific clinical Raman probe design and construction. Raman probes can be utilised as clinical tools able to provide rapid, non-invasive, real-time molecular analysis of disease specific changes in tissues. Clearly the target tissue location, the significance of spectral changes with disease and the possible access routes to the region of interest will vary for each clinical application considered. This review provides insight into design and construction considerations, including suitable probe designs and manufacturing materials compatible with Raman spectroscopy
The evolution of a supermassive binary caused by an accretion disc
The interaction of a massive binary and a non-self-gravitating circumbinary
accretion disc is considered. The shape of the stationary twisted disc produced
by the binary is calculated. It is shown that the inner part of the disc must
lie in the binary orbital plane for any value of viscosity.
When the inner disc midplane is aligned with the binary orbital plane on the
scales of interest and it rotates in the same sense as the binary, the
modification of the disc structure and the rate of decay of the binary orbit,
assumed circular, due to tidal exchange of angular momentum with the disc, are
calculated. It is shown that the modified disc structure is well described by a
self-similar solution of the non-linear diffusion equation governing the
evolution of the disc surface density. The calculated time scale for decay of
the binary orbit is always smaller than the "accretion" time ( is the mass of the secondary component, and is the disc
accretion rate), and is determined by ratio of secondary mass , assumed to
be much smaller than the primary mass, the disc mass inside the initial binary
orbit, and the form of viscosity in the disc.Comment: to be published in MNRA
Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)
The study compared the effect of four either fresh or force oxidized organic plant oils in diets for juvenile rainbow trout (Oncorhynchus mykiss) in which 47% of conventional LT fish meal protein was substituted by a mixture of 3 organic plant protein concentrates. Fish oil was completely substituted with either organic linseed oil; rape seed oil; sunflower oil or grape seed oil and evaluated based on feed intake, feed utilization, growth and digestibility. None of the plant oils affected feed intake and growth parameters. Organic plant oils had all a positive effect on lipid digestibility as compared with the fish oil based control diet, despite the very different FA profiles. The organic vegetable oils did not undergo autoxidation, as opposed to the fish oil control for which lipid digestibility was significantly negative influenced
Perturbations on steady spherical accretion in Schwarzschild geometry
The stationary background flow in the spherically symmetric infall of a
compressible fluid, coupled to the space-time defined by the static
Schwarzschild metric, has been subjected to linearized perturbations. The
perturbative procedure is based on the continuity condition and it shows that
the coupling of the flow with the geometry of space-time brings about greater
stability for the flow, to the extent that the amplitude of the perturbation,
treated as a standing wave, decays in time, as opposed to the amplitude
remaining constant in the Newtonian limit. In qualitative terms this situation
simulates the effect of a dissipative mechanism in the classical Bondi
accretion flow, defined in the Newtonian construct of space and time. As a
result of this approach it becomes impossible to define an acoustic metric for
a conserved spherically symmetric flow, described within the framework of
Schwarzschild geometry. In keeping with this view, the perturbation, considered
separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur
Secular instability in quasi-viscous disc accretion
A first-order correction in the -viscosity parameter of Shakura and
Sunyaev has been introduced in the standard inviscid and thin accretion disc. A
linearised time-dependent perturbative study of the stationary solutions of
this "quasi-viscous" disc leads to the development of a secular instability on
large spatial scales. This qualitative feature is equally manifest for two
different types of perturbative treatment -- a standing wave on subsonic
scales, as well as a radially propagating wave. Stability of the flow is
restored when viscosity disappears.Comment: 15 pages, 2 figures, AASTeX. Added some new material and upgraded the
reference lis
Self-gravitating warped discs around supermassive black holes
We consider warped equilibrium configurations for stellar and gaseous disks
in the Keplerian force-field of a supermassive black hole, assuming that the
self-gravity of the disk provides the only acting torques. Modeling the disk as
a collection of concentric circular rings, and computing the torques in the
non-linear regime, we show that stable, strongly warped precessing equilibria
are possible. These solutions exist for a wide range of disk-to-black hole mass
ratios , can span large warp angles of up to ,
have inner and outer boundaries, and extend over a radial range of a factor of
typically two to four. These equilibrium configurations obey a scaling relation
such that in good approximation \phidot/\Omega\propto M_d/M_{bh} where
\phidot is the (retrograde) precession frequency and is a
characteristic orbital frequency in the disk. Stability was determined using
linear perturbation theory and, in a few cases, confirmed by numerical
integration of the equations of motion. Most of the precessing equilibria are
found to be stable, but some are unstable. The main result of this study is
that highly warped disks near black holes can persist for long times without
any persistent forcing other than by their self-gravity. The possible relevance
of this to galactic nuclei is briefly discussed.Comment: 13 pages, 21 figures, published in MNRA
On the orbital and physical parameters of the HDE 226868/Cygnus X-1 binary system
In this paper we explore the consequences of the recent determination of the
mass m=(8.7 +/- 0.8)M_Sun of Cygnus X-1, obtained from the Quasi-Periodic
Oscillation (QPO)-photon index correlation scaling, on the orbital and physical
properties of the binary system HDE 226868/Cygnus X-1. By using such a result
and the latest spectroscopic optical data of the HDE 226868 supergiant star we
get M=(24 +/- 5)M_Sun for its mass. It turns out that deviations from the third
Kepler law significant at more than 1-sigma level would occur if the
inclination i of the system's orbital plane to the plane of the sky falls
outside the range 41-56 deg: such deviations cannot be due to the first
post-Newtonian (1PN) correction to the orbital period because of its smallness;
interpreted in the framework of the Newtonian theory of gravitation as due to
the stellar quadrupole mass moment Q, they are unphysical because Q would take
unreasonably large values. By conservatively assuming that the third Kepler law
is an adequate model for the orbital period we obtain i=(48 +/- 7) deg which
yields for the relative semimajor axis a=(42 +/- 9)R_Sun. Our estimate for the
Roche's lobe of HDE 226868 is r_M = (21 +/- 6)R_Sun.Comment: Latex2e, 7 pages, 1 table, 4 figures. To appear in ApSS (Astrophysics
and Space Science
A Toy Model for Blandford-Znajek Mechanism
A toy model for the Blandford-Znajek mechanism is investigated: a Kerr black
hole with a toroidal electric current residing in a thin disk around the black
hole. The toroidal electric current generates a poloidal magnetic field
threading the black hole and disk. Due to the interaction of the magnetic field
with remote charged particles, the rotation of the black hole and disk induces
an electromotive force, which can power an astrophysical load at remote
distance. The power of the black hole and disk is calculated. It is found that,
for a wide range of parameters specifying the rotation of the black hole and
the distribution of the electric current in the disk, the power of the disk
exceeds the power of the black hole. The torque provided by the black hole and
disk is also calculated. The torque of the disk is comparable to the torque of
the black hole. As the disk loses its angular momentum, the mass of the disk
gradually drifts towards the black hole and gets accreted. Ultimately the power
comes from the gravitational binding energy between the disk and the black
hole, as in the standard theory of accretion disk, instead of the rotational
energy of the black hole. This suggests that the Blandford-Znajek mechanism may
be less efficient in extracting energy from a rotating black hole with a thin
disk. The limitations of our simple model and possible improvements deserved
for future work are also discussed.Comment: 16 pages, 4 figures. Accepted for publication in Physical Review
Implications of nonlinearity for spherically symmetric accretion
We subject the steady solutions of a spherically symmetric accretion flow to
a time-dependent radial perturbation. The equation of the perturbation includes
nonlinearity up to any arbitrary order, and bears a form that is very similar
to the metric equation of an analogue acoustic black hole. Casting the
perturbation as a standing wave on subsonic solutions, and maintaining
nonlinearity in it up to the second order, we get the time-dependence of the
perturbation in the form of a Li\'enard system. A dynamical systems analysis of
the Li\'enard system reveals a saddle point in real time, with the implication
that instabilities will develop in the accreting system when the perturbation
is extended into the nonlinear regime. The instability of initial subsonic
states also adversely affects the temporal evolution of the flow towards a
final and stable transonic state.Comment: 14 pages, ReVTeX. Substantially revised with respect to the previous
version. Three figures and a new section (Sec. VI) adde
- …
