4,253 research outputs found
Southern Illinois Ticks: An Ecological and Medical Overview
Ticks are of concern to southern Illinois residents because they are common in the forested landscapes of the region and have the capability to cause disease in humans and pets. There are several tick-borne illnesses of concern to southern Illinois residents. Prescribed burning is a potential method of tick control, but no significant results were found in the correlation of tick density with time since burn
Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots
Mandow, A; Cantador, T.J.; Reina, A.J.; Martínez, J.L.; Morales, J.; García-Cerezo, A. "Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots," Robot2015: Second Iberian Robotics Conference, Advances in Robotics, (2016) Advances in Intelligent Systems and Computing, vol. 418. This is a self-archiving copy of the author’s accepted manuscript. The final publication is available at Springer via
http://link.springer.com/book/10.1007/978-3-319-27149-1.The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational
speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end,
spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides,
rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition
and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule
parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study
using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error
and model size is compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).This work was partially supported by the Spanish CICYT project DPI 2011-22443, the Andalusian project PE-2010 TEP-6101, and Universidad de Málaga-Andalucía Tech
Robust concurrent remote entanglement between two superconducting qubits
Entangling two remote quantum systems which never interact directly is an
essential primitive in quantum information science and forms the basis for the
modular architecture of quantum computing. When protocols to generate these
remote entangled pairs rely on using traveling single photon states as carriers
of quantum information, they can be made robust to photon losses, unlike
schemes that rely on continuous variable states. However, efficiently detecting
single photons is challenging in the domain of superconducting quantum circuits
because of the low energy of microwave quanta. Here, we report the realization
of a robust form of concurrent remote entanglement based on a novel microwave
photon detector implemented in the superconducting circuit quantum
electrodynamics (cQED) platform of quantum information. Remote entangled pairs
with a fidelity of are generated at Hz. Our experiment
opens the way for the implementation of the modular architecture of quantum
computation with superconducting qubits.Comment: Main paper: 7 pages, 4 figures; Appendices: 14 pages, 9 figure
Losses from top spoilage in horizontal silos
The top 3 ft of silage from 127 horizontal
silos was sampled at three locations across the
width of the silo during a 4-year period (1990
through 1993). Ninety-six percent of the silages
were either corn or forage sorghum, and only 18
percent of the silos were sealed with
polyethylene sheeting . Losses of organic matter
(OM) from spoilage were estimated by using
ash content as an internal marker. Sealing silos
dramatically reduced the estimated spoilage
losses in the top 3 ft.
All silages had greater estimated spoilage
losses in the top 18 inches in 1991 and 1993
than 1990 and 1992. Sealing reduced spoilage
losses of OM in the to p 18 inches by 16, 37, 19,
and 36 percentage units in 1990 through 1993,
respectively , and in the second 18 inches by 4,
13, 3, and 7 percentage units.
Dry matter (DM) contents were lower for
forage sorghum silages in the top 18 inches than
for corn silages in the first 3 years, and i n all 4
years, DM contents for sealed silages were
lower than those for unsealed silages. Silage
had higher pH values in the top 1 8 inches than
in the second 18 inches
Solar cell research, phase 2 Semiannual report
Radiation effects on properties of lithium solar cell
Subresultants in multiple roots: an extremal case
We provide explicit formulae for the coefficients of the order-d polynomial
subresultant of (x-\alpha)^m and (x-\beta)^n with respect to the set of
Bernstein polynomials \{(x-\alpha)^j(x-\beta)^{d-j}, \, 0\le j\le d\}. They are
given by hypergeometric expressions arising from determinants of binomial
Hankel matrices.Comment: 18 pages, uses elsart. Revised version accepted for publication at
Linear Algebra and its Application
Dataplane Specialization for High-performance OpenFlow Software Switching
OpenFlow is an amazingly expressive dataplane program-
ming language, but this expressiveness comes at a severe
performance price as switches must do excessive packet clas-
sification in the fast path. The prevalent OpenFlow software
switch architecture is therefore built on flow caching, but
this imposes intricate limitations on the workloads that can
be supported efficiently and may even open the door to mali-
cious cache overflow attacks. In this paper we argue that in-
stead of enforcing the same universal flow cache semantics
to all OpenFlow applications and optimize for the common
case, a switch should rather automatically specialize its dat-
aplane piecemeal with respect to the configured workload.
We introduce ES WITCH , a novel switch architecture that
uses on-the-fly template-based code generation to compile
any OpenFlow pipeline into efficient machine code, which
can then be readily used as fast path. We present a proof-
of-concept prototype and we demonstrate on illustrative use
cases that ES WITCH yields a simpler architecture, superior
packet processing speed, improved latency and CPU scala-
bility, and predictable performance. Our prototype can eas-
ily scale beyond 100 Gbps on a single Intel blade even with
complex OpenFlow pipelines
Wigner Molecules in Nanostructures
The one-- and two-- particle densities of up to four interacting electrons
with spin, confined within a quasi one--dimensional ``quantum dot'' are
calculated by numerical diagonalization. The transition from a dense
homogeneous charge distribution to a dilute localized Wigner--type electron
arrangement is investigated. The influence of the long range part of the
Coulomb interaction is studied. When the interaction is exponentially cut off
the ``crystallized'' Wigner molecule is destroyed in favor of an inhomogeneous
charge distribution similar to a charge density wave .Comment: 10 pages (excl. Figures), Figures available on request LaTe
- …
