2,138 research outputs found

    Nonequilibrium dynamics of spin-boson models from phase space methods

    Full text link
    An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic degrees of freedom remains theoretically challenging, especially for large system sizes and in higher than one dimension. Phase space methods such as the Truncated Wigner Approximation (TWA) have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we adapt the TWA to generic spin-boson models by making use of recently developed algorithms for discrete phase spaces [Schachenmayer, PRX 5, 011022 (2015)]. Furthermore we go beyond the standard TWA approximation by applying a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations [Pucci, PRB 93, 174302 (2016)] to our coupled spin-boson model. This allows in principle to study how systematically adding higher order corrections improves the convergence of the method. To test various levels of approximation we study an exactly solvable spin-boson model which is particularly relevant for trapped-ion arrays. Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of one- and two-point correlation functions in several dimensions and for arbitrary number of bosonic modes.Comment: 10+5 pages, 5 figure

    Relaxation of an isolated dipolar-interacting Rydberg quantum spin system

    Full text link
    How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation we employ different theoretical approaches which treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.Comment: 6 pages, 3 figure

    Ab initio study of the influence of nanoscale doping inhomogeneities in the phase separated state of La1x_{1-x}Cax_{x}MnO3_3

    Full text link
    The chemical influence in the phase separation phenomenon that occurs in perovskite manganites is discussed by means of ab initio calculations. Supercells have been used to simulate a phase separated state, that occurs at Ca concentrations close to the localized to itinerant crossover. We have first considered a model with two types of magnetic ordering coexisting within the same compound. This is not stable. However, a non-isotropic distribution of chemical dopants is found to be the ground state. This leads to regions in the system with different effective concentrations, that would always accompany the magnetic phase separation at the same nanometric scale, with hole-rich regions being more ferromagnetic in character and hole-poor regions being in the antiferromagnetic region of the phase diagram, as long as the system is close to a phase crossover.Comment: 8 pages, 7 figures, 1 tabl

    Fermiology and transport properties of the half-metallic itinerant ferromagnet CoS2_2: influence of spin orbit coupling

    Full text link
    Electronic structure calculations were performed on the compound CoS2_2, an itinerant ferromagnet whose magnetic properties can be understood in terms of spin fluctuation theory. We have identified nesting features in the Fermi surface of the compound, active for long wavelength spin fluctuations. The electronic structure of the material is close to a half-metal. We show the importance of introducing spin-orbit coupling (SOC) in the calculations, that partially destroys the half-metallicity of the material. By means of transport properties calculations, we have quantified the influence of SOC in the conductivity at room temperature, with an important decrease comparing to the GGA alone conductivity. SOC also helps to understand the negative 0 of the material, whose conductivity varies by a few percent with the introduction of small perturbations in the states around the Fermi level.Comment: 8 pages, 8 figure

    Pressure-induced metal-insulator transition in MgV_2O_4

    Full text link
    On the basis of experimental thermoelectric power results and ab initio calculations, we propose that a metal-insulator transition takes place at high pressure (approximately 6 GPa) in MgV_2O_4.Comment: 2 pages, 3 figures, accepted in Physica B (Strongly Correlated Electron Systems '07

    Biomechanical analysis of the penalty-corner drag-flick of elite male and female hockey players

    Get PDF
    The aim of this study was to analyse the kinematic sequencing in the penalty-corner drag-flicks of elite male and female field hockey players of international calibre. Thirteen participants (one skilled male drag-flicker and six male and six female elite players) participated in the study. An optoelectronic motion analysis system was used to capture the drag-flicks with six cameras, sampling at 250 Hz. Select ground reaction force parameters were obtained from a force platform which registered the last support of the front foot. Twenty trials were captured from each subject. Both player groups showed significantly (p < 0.05) smaller ball velocity at release, peak angular velocity of the pelvis, and negative and positive peak angular velocities of the stick than the skilled subject. Normalised ground reaction forces of the gender groups were also smaller than that of the skilled drag-flicker. By comparing these players we established that the cues of the skill level are a wide stance, a whipping action (rapid back lift) of the stick followed by an explosive sequential movement of the pelvis, upper trunk and stick
    corecore