699 research outputs found
A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces
The closest point method (Ruuth and Merriman, J. Comput. Phys.
227(3):1943-1961, [2008]) is an embedding method developed to solve a variety
of partial differential equations (PDEs) on smooth surfaces, using a closest
point representation of the surface and standard Cartesian grid methods in the
embedding space. Recently, a closest point method with explicit time-stepping
was proposed that uses finite differences derived from radial basis functions
(RBF-FD). Here, we propose a least-squares implicit formulation of the closest
point method to impose the constant-along-normal extension of the solution on
the surface into the embedding space. Our proposed method is particularly
flexible with respect to the choice of the computational grid in the embedding
space. In particular, we may compute over a computational tube that contains
problematic nodes. This fact enables us to combine the proposed method with the
grid based particle method (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024,
[2009]) to obtain a numerical method for approximating PDEs on moving surfaces.
We present a number of examples to illustrate the numerical convergence
properties of our proposed method. Experiments for advection-diffusion
equations and Cahn-Hilliard equations that are strongly coupled to the velocity
of the surface are also presented
Quantum Convolutional Error Correction Codes
I report two general methods to construct quantum convolutional codes for
quantum registers with internal states. Using one of these methods, I
construct a quantum convolutional code of rate 1/4 which is able to correct one
general quantum error for every eight consecutive quantum registers.Comment: To be reported in the 1st NASA Conf. on Quantum Comp., uses
llncs.sty, 12 page
Somalie
Daraasaad la sameeyey 1966 oo ku saabsan sidii ay ku suurtaggeli lahayd warshadaynta dalka Soomaaliya iyo diraasaad dhaqaale oo halkaas lagu qoondaynayo mashaariic.Studio sulle possibilità di industrializzazione della Somalia effettuato nel 1966 e studio economico dei progetti in essere.A study on the possibilities of industrialization of Somalia carried out in 1966 and an economic study of the projects in place.Link:http://aei.pitt.edu/34949/1/A1100.pd
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector
Originally designed as a new nuclear reactor monitoring device, the Nucifer
detector has successfully detected its first neutrinos. We provide the second
shortest baseline measurement of the reactor neutrino flux. The detection of
electron antineutrinos emitted in the decay chains of the fission products,
combined with reactor core simulations, provides an new tool to assess both the
thermal power and the fissile content of the whole nuclear core and could be
used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the
Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the
compact Osiris research reactor core (70MW) operating at the Saclay research
centre of the French Alternative Energies and Atomic Energy Commission (CEA),
the experiment also exhibits a well-suited configuration to search for a new
short baseline oscillation. We report the first results of the Nucifer
experiment, describing the performances of the 0.85m3 detector remotely
operating at a shallow depth equivalent to 12m of water and under intense
background radiation conditions. Based on 145 (106) days of data with reactor
ON (OFF), leading to the detection of an estimated 40760 electron
antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +-
18(syst) electron antineutrinos/day, in agreement with the prediction 277(23)
electron antineutrinos/day. Due the the large background no conclusive results
on the existence of light sterile neutrinos could be derived, however. As a
first societal application we quantify how antineutrinos could be used for the
Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version
A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces
The closest point method (Ruuth and Merriman, J. Comput. Phys. 227(3):1943-1961, [2008]) is an embedding method developed to solve a variety of partial differential equations (PDEs) on smooth surfaces, using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. Recently, a closest point method with explicit time-stepping was proposed that uses finite differences derived from radial basis functions (RBF-FD). Here, we propose a least-squares implicit formulation of the closest point method to impose the constant-along-normal extension of the solution on the surface into the embedding space. Our proposed method is particularly flexible with respect to the choice of the computational grid in the embedding space. In particular, we may compute over a computational tube that contains problematic nodes. This fact enables us to combine the proposed method with the grid based particle method (Leung and Zhao, J. Comput. Phys. 228(8):2993-3024, [2009]) to obtain a numerical method for approximating PDEs on moving surfaces. We present a number of examples to illustrate the numerical convergence properties of our proposed method. Experiments for advection-diffusion equations and Cahn-Hilliard equations that are strongly coupled to the velocity of the surface are also presented.NSERC Canada Grant (RGPIN 2016-04361),
Hong Kong Research Grant Council GRF Grant,
Hong Kong Baptist University FRG Gran
Purified Human Pancreatic Duct Cell Culture Conditions Defined by Serum-Free High-Content Growth Factor Screening
The proliferation of pancreatic duct-like CK19+ cells has implications for multiple disease states including pancreatic cancer and diabetes mellitus. The in vitro study of this important cell type has been hampered by their limited expansion compared to fibroblast-like vimentin+ cells that overgrow primary cultures. We aimed to develop a screening platform for duct cell mitogens after depletion of the vimentin+ population. The CD90 cell surface marker was used to remove the vimentin+ cells from islet-depleted human pancreas cell cultures by magnetic-activated cell sorting. Cell sorting decreased CD90+ cell contamination of the cultures from 34±20% to 1.3±0.6%, yielding purified CK19+ cultures with epithelial morphology. A full-factorial experimental design was then applied to test the mitogenic effects of bFGF, EGF, HGF, KGF and VEGF. After 6 days in test conditions, the cells were labelled with BrdU, stained and analyzed by high-throughput imaging. This screening assay confirmed the expected mitogenic effects of bFGF, EGF, HGF and KGF on CK19+ cells and additionally revealed interactions between these factors and VEGF. A serum-free medium containing bFGF, EGF, HGF and KGF led to CK19+ cell expansion comparable to the addition of 10% serum. The methods developed in this work should advance pancreatic cancer and diabetes research by providing effective cell culture and high-throughput screening platforms to study purified primary pancreatic CK19+ cells
Factors influencing success of clinical genome sequencing across a broad spectrum of disorders
To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges
A qualitative study of older patients’ and family caregivers’ perspectives of transitional care from hospital to home
Author's accepted version (postprint).This is an Accepted Manuscript of an article published by Springer in Research and Theory for Nursing Practice on 05/03/2021.Available online: https://connect.springerpub.com/content/sgrrtnp/early/2021/03/05/rtnp-d-20-00067acceptedVersio
Nanoscale surface topography reshapes neuronal growth in culture
International audienceNeurons are sensitive to topographical cues provided either by in vivo or in vitro environments on the micrometric scale. We have explored the role of randomly distributed silicon nanopillars on primary hippocampal neurite elongation and axonal differentiation. We observed that neurons adhere on the upper part of nanopillars with a typical distance between adhesion points of about 500 nm. These neurons produce fewer neurites, elongate faster, and differentiate an axon earlier than those grown on flat silicon surfaces. Moreover, when confronted with a differential surface topography, neurons specify an axon preferentially on nanopillars. As a whole, these results highlight the influence of the physical environment in many aspects of neuronal growth
- …
