4,777 research outputs found
Practical rare event sampling for extreme mesoscale weather
Extreme mesoscale weather, including tropical cyclones, squall lines, and
floods, can be enormously damaging and yet challenging to simulate; hence,
there is a pressing need for more efficient simulation strategies. Here we
present a new rare event sampling algorithm called Quantile Diffusion Monte
Carlo (Quantile DMC). Quantile DMC is a simple-to-use algorithm that can sample
extreme tail behavior for a wide class of processes. We demonstrate the
advantages of Quantile DMC compared to other sampling methods and discuss
practical aspects of implementing Quantile DMC. To test the feasibility of
Quantile DMC for extreme mesoscale weather, we sample extremely intense
realizations of two historical tropical cyclones, 2010 Hurricane Earl and 2015
Hurricane Joaquin. Our results demonstrate Quantile DMC's potential to provide
low-variance extreme weather statistics while highlighting the work that is
necessary for Quantile DMC to attain greater efficiency in future applications.Comment: 18 pages, 9 figure
A Model of Cooperative Threads
We develop a model of concurrent imperative programming with threads. We
focus on a small imperative language with cooperative threads which execute
without interruption until they terminate or explicitly yield control. We
define and study a trace-based denotational semantics for this language; this
semantics is fully abstract but mathematically elementary. We also give an
equational theory for the computational effects that underlie the language,
including thread spawning. We then analyze threads in terms of the free algebra
monad for this theory.Comment: 39 pages, 5 figure
The Ultraviolet-to-Mid-Infrared Spectral Energy Distribution of Weak Emission Line Quasars
We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey
(SDSS) quasars at 2.7 <= z <= 5.9 which have weak or undetectable
high-ionization emission lines in their rest-frame ultraviolet (UV) spectra
(hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with
SDSS spectra and ground-based, near-infrared (IR) photometry of these sources
to produce a large inventory of spectral energy distributions (SEDs) of WLQs
across the rest-frame ~0.1-5 mum spectral band. The SEDs of our sources are
inconsistent with those of BL Lacertae objects which are dominated by
synchrotron emission due to a jet aligned close to our line-of-sight, but are
consistent with the SED of ordinary quasars with similar luminosities and
redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust
emission. This indicates that broad emission lines in WLQs are intrinsically
weak, rather than suffering continuum dilution from a jet, and that such
sources cannot be selected efficiently from traditional photometric surveys.Comment: 10 pages (emulateapj), 4 figures. Accepted for publication in Ap
Operational Semantics of Process Monitors
CSPe is a specification language for runtime monitors that can directly
express concurrency in a bottom-up manner that composes the system from
simpler, interacting components. It includes constructs to explicitly flag
failures to the monitor, which unlike deadlocks and livelocks in conventional
process algebras, propagate globally and aborts the whole system's execution.
Although CSPe has a trace semantics along with an implementation demonstrating
acceptable performance, it lacks an operational semantics. An operational
semantics is not only more accessible than trace semantics but also
indispensable for ensuring the correctness of the implementation. Furthermore,
a process algebra like CSPe admits multiple denotational semantics appropriate
for different purposes, and an operational semantics is the basis for
justifying such semantics' integrity and relevance. In this paper, we develop
an SOS-style operational semantics for CSPe, which properly accounts for
explicit failures and will serve as a basis for further study of its
properties, its optimization, and its use in runtime verification
- …
