70 research outputs found

    Control of the antiferromagnetic domain configuration and Néel axis orientation with epitaxial strain

    Get PDF
    In the growing field of spintronic devices incorporating antiferromagnetic materials, control of the domain configuration and Néel axis orientation is critical for technological implementations. Here we show by X-ray magnetic linear dichroism in photoelectron emission microscopy how antiferromagnetic properties of LaFeO3 (LFO) thin films can be tailored through epitaxial strain. LFO films were grown via molecular beam epitaxy with precise stoichiometric control, using substrates that span a range of strain states—from compressive to tensile—and crystal symmetries, including different crystallographic orientations. First, we show that epitaxial strain dictates the Néel axis orientation, shifting it from completely in-plane under compressive strain to completely out-of-plane under tensile strain, regardless of the substrate crystal symmetry. Second, we find that LFO films grown on cubic substrates exhibit a fourfold distribution of antiferromagnetic domains, but can be controlled by varying the substrate miscut, while those on orthorhombic substrates, regardless of strain state, form large-scale monodomains, a highly desirable feature for spintronic applications

    Anisotropic hybridization probed by polarization dependent x-ray absorption spectroscopy in VI3 van der Waals Mott ferromagnet

    Full text link
    Polarization dependent x-ray absorption spectroscopy was used to study the magnetic ground state and the orbital occupation in bulk-phase VI3_3 van der Waals crystals below and above the ferromagnetic and structural transitions. X-ray natural linear dichroism and X-ray magnetic circular dichroism spectra acquired at the V L2,3L_{2,3} edges are compared against multiplet cluster calculations within the frame of the ligand field theory to quantify the intra-atomic electronic interactions at play and evaluate the effects of symmetry reduction occurring in a trigonally distorted VI6_6 unit. We observed a non zero linear dichroism proving the presence of an anisotropic charge density distribution around the V3+^{3+} ion due to the unbalanced hybridization between the Vanadium and the ligand states. Such hybridization acts as an effective trigonal crystal field, slightly lifting the degeneracy of the t2g2t_{2g}^2 ground state. However, the energy splitting associated to the distortion underestimates the experimental band gap, suggesting that the insulating ground state is stabilized by Mott correlation effects rather than via a Jahn-Teller mechanism. Our results clarify the role of the distortion in VI3_3 and establish a benchmark for the study of the spectroscopic properties of other van der Waals halides, including emerging 2D materials with mono and few-layers thickness, whose fundamental properties might be altered by reduced dimensions and interface proximity

    Stabilization of an Enantiopure Sub-monolayer of Helicene Radical Cations on a Au(111) Surface through Noncovalent Interactions

    Get PDF
    In the past few years, the chirality and magnetism of molecules have received notable interest for the development of novel molecular devices. Chiral helicenes combine both these properties, and thus their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel strategy to deposit a sub-monolayer of enantiopure thia[4]helicene radical cations on a pre-functionalized Au(111) substrate. This approach results in both the paramagnetic character and the chemical structure of these molecules being maintained at the nanoscale, as demonstrated by in-house characterizations. Furthermore, synchrotron-based X-ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface

    An integrated ultra-high vacuum apparatus for growth and in situ characterization of complex materials

    Get PDF
    Here we present an integrated ultra-high vacuum apparatus \u2013 named MBE-Cluster \u2013 dedicated to the growth and in situ structural, spectroscopic and magnetic characterization of complex materials. Molecular Beam Epitaxy (MBE) growth of metal oxides, e.g. manganites, and deposition of patterned metallic layers can be fabricated and in situ characterized by reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED) - Auger Electron Spectroscopy, X-ray photoemission spectroscopy (PES) and azimuthal longitudinal magneto-optic Kerr effect (MOKE). The temperature can be controlled in the range from 5 to 580 K, with the possibility of application of magnetic fields H up to \ub17 kOe and electric fields E for voltages up to \ub1500 V. The MBE-Cluster operates for in-house research as well as user facility in combination with the APE beamlines at Sincrotrone-Trieste and the high harmonic generator (HHG) facility for timeresolved spectroscopy

    Zno thin films growth optimization for piezoelectric application

    Get PDF
    The piezoelectric response of ZnO thin films in heterostructure-based devices is strictly related to their structure and morphology. We optimize the fabrication of piezoelectric ZnO to reduce its surface roughness, improving the crystalline quality, taking into consideration the role of the metal electrode underneath. The role of thermal treatments, as well as sputtering gas composition, is investigated by means of atomic force microscopy and x-ray diffraction. The results show an optimal reduction in surface roughness and at the same time a good crystalline quality when 75% O2 is introduced in the sputtering gas and deposition is performed between room temperature and 573 K. Subsequent annealing at 773 K further improves the film quality. The introduction of Ti or Pt as bottom electrode maintains a good surface and crystalline quality. By means of piezoelectric force microscope, we prove a piezoelectric response of the film in accordance with the literature, in spite of the low ZnO thickness and the reduced grain size, with a unipolar orientation and homogenous displacement when deposited on Ti electrode

    The planar triangular S = 3/2 magnet AgCrSe2 : magnetic frustration, short range correlations, and field tuned anisotropic cycloidal magnetic order

    Get PDF
    Funding: Deutsche Forschungsgemeinschaft (DFG) through the SFB 1143 and the Wurzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter–ct.qmat (EXC 2147, Project No. 390858490), as well as the support of the HLD at HZDR, a member of the European Magnetic Field Laboratory (EMFL). We gratefully acknowledge support from the European Research Council (through the QUESTDO project, 714193), the Leverhulme Trust, and the Royal Society. We thank the Elettra synchrotron for access to the APE-HE beamline under proposal number 20195300. The research leading to this result has been supported by the project CALIPSOplus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Part of this work has been performed in the framework of the Nanoscience Foundry and Fine Analysis (NFFA-MUR Italy Progetti Internazionali) project (www.trieste.NFFA.eu).Our studies evidence an anisotropic magnetic order below TN = 32~K. Susceptibility data in small fields of about 1~T reveal an antiferromagnetic (AFM) order for H ⊥ c, whereas for H || c the data are reminiscent of a field-induced ferromagnetic (FM) structure. At low temperatures and for H ⊥ c, the field-dependent magnetization and AC susceptibility data evidence a metamagnetic transition at H+ = 5~T, which is absent for H || c. We assign this to a transition from a planar cycloidal spin structure at low fields to a planar fan-like arrangement above H+. A fully FM polarized state is obtained above the saturation field of H⊥S = 23.7~T at 2~K with a magnetization of Ms = 2.8~μB/Cr. For H || c, M(H) monotonously increases and saturates at the same Ms value at HIIS = 25.1~T at 4.2~K. Above TN, the magnetic susceptibility and specific heat indicate signatures of two dimensional (2D) frustration related to the presence of planar ferromagnetic and antiferromagnetic exchange interactions. We found a pronounced nearly isotropic maximum in both properties at about T* = 45~K, which is a clear fingerprint of short-range correlations and emergent spin fluctuations. Calculations based on a planar 2D Heisenberg model support our experimental findings and suggest a predominant FM exchange among nearest and AFM exchange among third-nearest neighbors. Only a minor contribution might be assigned to the antisymmetric Dzyaloshinskii-Moriya interaction possible related to the non-centrosymmetric polar space group R3m. Due to these competing interactions, the magnetism in AgCrSe2, in contrast to the oxygen based delafossites, can be tuned by relatively small, experimentally accessible, magnetic fields, allowing us to establish the complete anisotropic magnetic H-T phase diagram in detail.PostprintPeer reviewe

    Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries

    Get PDF
    Aims Patient access to reperfusion therapy and the use of primary percutaneous coronary intervention (p-PCI) or thrombolysis (TL) varies considerably between European countries. The aim of this study was to obtain a realistic contemporary picture of how patients with ST elevation myocardial infarction (STEMI) are treated in different European countries. Methods and results The chairpersons of the national working groups/societies of interventional cardiology in European countries and selected experts known to be involved in the national registries joined the writing group upon invitation. Data were collected about the country and any existing national STEMI or PCI registries, about STEMI epidemiology, and treatment in each given country and about PCI and p-PCI centres and procedures in each country. Results from the national and/or regional registries in 30 countries were included in this analysis. The annual incidence of hospital admission for any acute myocardial infarction (AMI) varied between 90–312/100 thousand/year, the incidence of STEMI alone ranging from 44 to 142. Primary PCI was the dominant reperfusion strategy in 16 countries and TL in 8 countries. The use of a p-PCI strategy varied between 5 and 92% (of all STEMI patients) and the use of TL between 0 and 55%. Any reperfusion treatment (p-PCI or TL) was used in 37–93% of STEMI patients. Significantly less reperfusion therapy was used in those countries where TL was the dominant strategy. The number of p-PCI procedures per million per year varied among countries between 20 and 970. The mean population served by a single p-PCI centre varied between 0.3 and 7.4 million inhabitants. In those countries offering p-PCI services to the majority of their STEMI patients, this population varied between 0.3 and 1.1 million per centre. In-hospital mortality of all consecutive STEMI patients varied between 4.2 and 13.5%, for patients treated by TL between 3.5 and 14% and for patients treated by p-PCI between 2.7 and 8%. The time reported from symptom onset to the first medical contact (FMC) varied between 60 and 210 min, FMC-needle time for TL between 30 and 110 min, and FMC-balloon time for p-PCI between 60 and 177 min. Conclusion Most North, West, and Central European countries used p-PCI for the majority of their STEMI patients. The lack of organized p-PCI networks was associated with fewer patients overall receiving some form of reperfusion therapy

    Data standards for atrial fibrillation/flutter and catheter ablation: The European Unified Registries for Heart Care Evaluation and Randomized Trials (EuroHeart).

    Get PDF
    AIMS: Standardized data definitions are essential for monitoring and assessment of care and outcomes in observational studies and randomized controlled trials (RCTs). The European Unified Registries for Heart Care Evaluation and Randomized Trials (EuroHeart) project of the European Society of Cardiology aimed to develop contemporary data standards for atrial fibrillation/flutter (AF/AFL) and catheter ablation. METHODS AND RESULTS: We used the EuroHeart methodology for development of data standards and formed a Working Group comprising 23 experts in AF/AFL and catheter ablation registries, as well as representatives from the European Heart Rhythm Association and EuroHeart. We conducted a systematic literature review of AF/AFL and catheter ablation registries and data standard documents to generate candidate variables. We used a modified Delphi method to reach consensus on a final variable set. For each variable, the Working Group developed permissible values and definitions, and agreed as to whether the variable was mandatory (Level 1) or additional (Level 2). In total, 70 Level 1 and 92 Level 2 variables were selected and reviewed by a wider Reference Group of 42 experts from 24 countries. The Level 1 variables were implemented into the EuroHeart IT platform as the basis for continuous registration of individual patient data. CONCLUSION: By means of a structured process and working with international stakeholders, harmonized data standards for AF/AFL and catheter ablation for AF/AFL were developed. In context of the EuroHeart project, this will facilitate country-level quality of care improvement, international observational research, registry-based RCTs and post-marketing surveillance of devices and pharmacotherapies
    corecore