35 research outputs found
Piecewise smooth systems near a co-dimension 2 discontinuity manifold: can one say what should happen?
We consider a piecewise smooth system in the neighborhood of a co-dimension 2
discontinuity manifold . Within the class of Filippov solutions, if
is attractive, one should expect solution trajectories to slide on
. It is well known, however, that the classical Filippov
convexification methodology is ambiguous on . The situation is further
complicated by the possibility that, regardless of how sliding on is
taking place, during sliding motion a trajectory encounters so-called generic
first order exit points, where ceases to be attractive.
In this work, we attempt to understand what behavior one should expect of a
solution trajectory near when is attractive, what to expect
when ceases to be attractive (at least, at generic exit points), and
finally we also contrast and compare the behavior of some regularizations
proposed in the literature.
Through analysis and experiments we will confirm some known facts, and
provide some important insight: (i) when is attractive, a solution
trajectory indeed does remain near , viz. sliding on is an
appropriate idealization (of course, in general, one cannot predict which
sliding vector field should be selected); (ii) when loses attractivity
(at first order exit conditions), a typical solution trajectory leaves a
neighborhood of ; (iii) there is no obvious way to regularize the
system so that the regularized trajectory will remain near as long as
is attractive, and so that it will be leaving (a neighborhood of)
when looses attractivity.
We reach the above conclusions by considering exclusively the given piecewise
smooth system, without superimposing any assumption on what kind of dynamics
near (or sliding motion on ) should have been taking place.Comment: 19 figure
Structural Behavior of Buried Pipe Bends and Their Effect on Pipeline Response in Fault Crossing Areas
In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate
Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2+/- aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor-related hematologic dysfunctions
Synchronizability of piecewise-linear maps
In this paper we discuss the phenomenon of synchronization of chaotic systems in the case of coupled piecewise linear (PWL) continuous and discontinuous one-dimensional maps. We present numerical results for two examples of coupled systems consisting of two PWL maps. We illustrate how the coupled system can achieve synchronization and discuss the nature of the bifurcation that occurs at a critical value of the coupling strength. We then determine this critical coupling using linear stability analysis. We discuss the effects of variation of the parameters of the PWL maps on the critical coupling and present different bifurcation scenarios obtained for different sets of values of these parameters. Finally, we discuss an extension of our work to the synchronizability of networks consisting of two or more PWL maps. We show how the synchronizability of a network of PWL maps can be improved by tuning the map parameters
Comparing different ODE modelling approaches for gene regulatory networks
A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical models for the purposes of analysis and design. For example, to synthesize a gene regulatory network, the derivation of a mathematical model is important in order to carry out in silico investigations of the network dynamics and to investigate parameter variations and robustness issues. Different mathematical frameworks have been proposed to derive such models. In particular, the use of sets of nonlinear ordinary differential equations (ODEs) has been proposed to model the dynamics of the concentrations of mRNAs and proteins. These models are usually characterized by the presence of highly nonlinear Hill function terms. A typical simplification is to reduce the number of equations by means of a quasi-steady-state assumption on the mRNA concentrations. This yields a class of simplified ODE models. A radically different approach is to replace the Hill functions by piecewise-linear approximations [Casey, R., de Jong, H., Gouze, J.L., 2006. Piecewise-linear models of genetic regulatory networks: equilibria and their stability. J. Math. Biol. 52 (1), 27–56]. A further modelling approach is the use of discrete-time maps [Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A., 2006. Discrete time piecewise affine models of genetic regulatory networks. J. Math. Biol. 52, 524–570] where the evolution of the system is modelled in discrete, rather than continuous, time. The aim of this paper is to discuss and compare these different modelling approaches, using a representative gene regulatory network. We will show that different models often lead to conflicting conclusions concerning the existence and stability of equilibria and stable oscillatory behaviours. Moreover, we shall discuss, where possible, the viability of making certain modelling approximations (e.g. quasi-steady-state mRNA dynamics or piecewise-linear approximations of Hill functions) and their effects on the overall system dynamics
Soil-Pipe Interaction Models for the Simulation of Buried Steel Pipeline Behaviour Against Geohazards
Hydrocarbon pipelines constructed in geohazards areas, are subjected to ground-induced actions, associated with the development of severe strains in the pipeline and constitute major threats for their structural integrity. In the course of pipeline design, calculation of those strains is necessary for safeguarding pipeline integrity, and the development of reliable analytical/numerical design tools that account for soil-pipe interaction is required.
In the present paper, soil-pipe interaction models for buried steel pipelines subjected to severe ground-induced actions are presented. First, two numerical methodologies, (simplified and rigorous) and one analytical are presented and compared, followed by an experimental verification; transversal soil-pipe interaction is examined through full-scale experimental testing, and comparisons of numerical simulations with rigorous finite element models are reported. Furthermore, the rigorous model is compared with the results from a special-purpose full-scale “landslide/fault” experimental test in order to examine the soil-pipe interaction in a complex loading conditions. Finally, the verified rigorous model is compared with both the simplified models and the analytical methodology.</jats:p
Design and construction of a versatile synthetic network for bistable gene expression in mammalian systems
We constructed and modeled a novel synthetic network which may be able to exhibit bistable expression of a reporter gene in mammalian cells. This network is based on an aptamer-fused short-hairpin RNA (shRNA) directed against a single mRNA encoding both a EGFP reporter gene and the repressor tTR-KRAB, which, in turn, represses transcription of the shRNA. The activity of the shRNA can be controlled by an inducer molecule (theophylline) which prevents the aptamer-fused shRNA to be properly processed. Repression of the tTR-KRAB can be relieved by treatment with doxycyline. This reciprocal negative feed-back loop can exhibit a bistable response, as shown through the mathematical analysis performed here. Specifically, the network can be controlled to induce sustained expression of a shRNA, or the reporter gene, with a transient input of two different inducer molecules
Viral meningitis in Cyprus and England : summer 1996
An outbreak of viral meningitis began in Cyprus on 5 July 1996. By 28 August a total of 316 cases had been admitted to hospital, most of whom were infants and young children; 55 (17%) were less than 1 year of age, 117 (37%) were aged 1 to 4 years, 103 (33</jats:p
