142 research outputs found
Pointlike constituent quarks and scattering equivalences
In this paper scattering equivalences are used to simplify current operators
in constituent quark models. The simplicity of the method is illustrated by
applying it to a relativistic constituent quark model that fits the meson mass
spectrum. This model requires a non-trivial constituent quark current operator
to fit the pion form factor data. A model with a different confining
interaction, that has the identical spectrum and can reproduce the measured
pion form factor using only point-like constituent quark impulse currents is
constructed. Both the original and transformed models are relativistic
direct-interaction models with a light-front kinematic subgroup.Comment: 12 pages, 6 figures, corrected caption on fig
Poincare Semigroup Symmetry as an Emergent Property of Unstable Systems
The notion that elementary systems correspond to irreducible representations
of the Poincare group is the starting point for this paper, which then goes on
to discuss how a semigroup for the time evolution of unstable states and
resonances could emerge from the underlying Poincare symmetry. Important tools
in this analysis are the Clebsch-Gordan coefficients for the Poincare group.Comment: 17 pages, 1 figur
Relativistic quantum theories and neutrino oscillations
Neutrino oscillations are examined under the broad requirements of
Poincar\'e-invariant scattering theory in an S-matrix formulation.
This approach can be consistently applied to theories with either field or
particle degrees of freedom. The goal of this paper is to use this general
framework to identify all of the unique physical properties of this problem
that lead to a simple oscillation formula. We discuss what is in principle
observable, and how many factors that are important in principle end up being
negligible in practice.Comment: 21 pages, no figure
Nucleon generalized polarizabilities within a relativistic Constituent Quark Model
Nucleon generalized polarizabilities are investigated within a relativistic
framework, defining such quantities through a Lorentz covariant multipole
expansion of the amplitude for virtual Compton scattering. The key physical
ingredients in the calculation of the nucleon polarizabilities are the Lorentz
invariant reduced matrix elements of the electromagnetic transition current,
which can be evaluated from off-energy-shell helicity amplitudes. The evolution
of the proton paramagnetic polarizability, , as a function of
the virtual-photon three-momentum transfer is explicitly evaluated within
a relativistic constituent quark model by adopting transition form factors
obtained in the light-front formalism. The discussion is focussed on the role
played by the effects due to the relativistic approach and to the transition
form factors, derived within different models.Comment: 14 pages and three figures (included), to appear in Phys. Rev. C (May
1998
The Balian-Br\'ezin Method in Relativistic Quantum Mechanics
The method suggested by Balian and Br\'ezin for treating angular momentum
reduction in the Faddeev equations is shown to be applicable to the
relativistic three-body problem.Comment: 14 pages in LaTe
Relativistic Structure of the Deuteron: 1.Electro-disintegration and y-scaling
Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the
deuteron with realistic interaction kernel including the exchange of pi, sigma,
omega, rho, eta and delta mesons, are used to systematically investigate
relativistic effects in inclusive quasi-elastic electron-deuteron scattering
within the relativistic impulse approximation. Relativistic y-scaling is
considered by generalising the non relativistic scaling function to the
relativistic case, and it is shown that y-scaling does occur in the usual
relativistic scaling variable resulting from the energy conservation in the
instant form of dynamics. The present approach of y-scaling is fully covariant,
with the deuteron being described by eight components, viz. the 3S_1^{++},
3S_1^{--}, 3D_1^{++}, 3D_1^{--}, 3P_1^{+-}, 3P_1^{-+}, 1P_1^{+-}, 1P_1^{-+}
waves. It is demonstrated that if the negative relative energy states 1P_1,
3P_1 are disregarded, the concept of covariant momentum distributions N(p_0,p),
with p_0=M_D/2-\sqrt{p^2+m^2}, can be introduced, and that calculations of
lectro-disintegration cross section in terms of these distributions agree
within few percents with the exact calculations which include the 1P_1, 3P_1
states, provided the nucleon three momentum |p|\<= 1 GeV/c; in this momentum
range, the asymptotic relativistic scaling function is shown to coincide with
the longitudinal covariant momentum distribution.Comment: 32 LaTeX pages, 18 eps-figures. Final version to appear in Phys. Rev.
The alpha-particle based on modern nuclear forces
The Faddeev-Yakubovsky equations for the alpha-particle are solved. Accurate
results are obtained for several modern NN interaction models, which include
charge-symmetry breaking effects in the NN force, nucleon mass dependences as
well as the Coulomb interaction. These models are augmented by three-nucleon
forces of different types and adjusted to the 3N binding energy. Our results
are close to the experimental binding energy with a slight overbinding. Thus
there is only little room left for the contribution of possible 4N interactions
to the alpha-particle binding energy. We also discuss model dependences of the
binding energies and the wave functions.Comment: 22 pages REVTeX 4, 12 figures, table with TM parameters added, typos
corrected, version as published in PR
Heuristic Models of Two-Fermion Relativistic Systems with Field-Type Interaction
We use the chain of simple heuristic expedients to obtain perturbative and
exactly solvable relativistic spectra for a family of two-fermionic bound
systems with Coulomb-like interaction. In the case of electromagnetic
interaction the spectrum coincides up to the second order in a coupling
constant with that following from the quantum electrodynamics. Discrepancy
occurs only for S-states which is the well-known difficulty in the bound-state
problem. The confinement interaction is considered too.
PACS number(s): 03.65.Pm, 03.65.Ge, 12.39.PnComment: 16 pages, LaTeX 2.0
Solving the inhomogeneous Bethe-Salpeter equation
We develop an advanced method of solving homogeneous and inhomogeneous
Bethe-Salpeter equations by using the expansion over the complete set of
4-dimensional spherical harmonics. We solve Bethe-Salpeter equations for bound
and scattering states of scalar and spinor particles for the case of one meson
exchange kernels. Phase shifts calculated for the scalar model are in agreement
with the previously published results. We discuss possible manifestations of
separability for one meson exchange interaction kernels.Comment: 9 pages, 11 eps-figures. Talk presented by S. S. Semikh at XVII
International Baldin Seminar on High Energy Physics Problems "Relativistic
Nuclear Physics and Quantum Chromodynamics", September 27 - October 2, 2004,
Dubna, Russia; to appear in the proceedings of this conferenc
Nucleon-nucleon interaction in the -matrix inverse scattering approach and few-nucleon systems
The nucleon-nucleon interaction is constructed by means of the -matrix
version of inverse scattering theory. Ambiguities of the interaction are
eliminated by postulating tridiagonal and quasi-tridiagonal forms of the
potential matrix in the oscillator basis in uncoupled and coupled waves,
respectively. The obtained interaction is very accurate in reproducing the
scattering data and deuteron properties. The interaction is used in the no-core
shell model calculations of H and He nuclei. The resulting binding
energies of H and He are very close to experimental values.Comment: Text is revised, new figures and references adde
- …
