864 research outputs found
Connecting Galaxy Evolution, Star Formation and the X-ray Background
As a result of deep hard X-ray observations by Chandra and XMM-Newton a
significant fraction of the cosmic X-ray background (CXRB) has been resolved
into individual sources. These objects are almost all active galactic nuclei
(AGN) and optical followup observations find that they are mostly obscured Type
2 AGN, have Seyfert-like X-ray luminosities (i.e., L_X ~ 10^{43-44} ergs
s^{-1}), and peak in redshift at z~0.7. Since this redshift is similar to the
peak in the cosmic star-formation rate, this paper proposes that the obscuring
material required for AGN unification is regulated by star-formation within the
host galaxy. We test this idea by computing CXRB synthesis models with a ratio
of Type 2/Type 1 AGN that is a function of both z and 2-10 keV X-ray
luminosity, L_X. The evolutionary models are constrained by parameterizing the
observed Type 1 AGN fractions from the recent work by Barger et al. The
parameterization which simultaneously best accounts for Barger's data, the CXRB
spectrum and the X-ray number counts has a local, low-L_X Type 2/Type 1 ratio
of 4, and predicts a Type 2 AGN fraction which evolves as (1+z)^{0.3}. Models
with no redshift evolution yielded much poorer fits to the Barger Type 1 AGN
fractions. This particular evolution predicts a Type 2/Type 1 ratio of 1-2 for
log L_X > 44, and thus the deep X-ray surveys are missing about half the
obscured AGN with these luminosities. These objects are likely to be Compton
thick. Overall, these calculations show that the current data strongly supports
a change to the AGN unification scenario where the obscuration is connected
with star formation in the host galaxy rather than a molecular torus alone. The
evolution of the obscuration implies a close relationship between star
formation and AGN fueling, most likely due to minor mergers or interactions.Comment: 36 pages, 8 figures, ApJ in press. Minor changes to match published
versio
Inhomogeneous cosmologies, the Copernican principle and the cosmic microwave background: More on the EGS theorem
We discuss inhomogeneous cosmological models which satisfy the Copernican
principle. We construct some inhomogeneous cosmological models starting from
the ansatz that the all the observers in the models view an isotropic cosmic
microwave background. We discuss multi-fluid models, and illustrate how more
general inhomogeneous models may be derived, both in General Relativity and in
scalar-tensor theories of gravity. Thus we illustrate that the cosmological
principle, the assumption that the Universe we live in is spatially
homogeneous, does not necessarily follow from the Copernican principle and the
high isotropy of the cosmic microwave background.Comment: 17 pages; to appear in GR
Distant X-ray Galaxies: Insights from the Local Population
A full understanding of the origin of the hard X-ray background requires a
complete and accurate census of the distant galaxies that produce it.
Unfortunately, distant X-ray galaxies tend to be very faint at all wavelengths,
which hinders efforts to perform this census. This chapter discusses the
insights that can be obtained through comparison of the distant population to
local X-ray galaxies, whose properties are well characterized. Such comparisons
will ultimately aid investigations into the cosmic evolution of supermassive
black holes and their environments.Comment: 19 pages, 10 figures, to appear as Chapter 7 in "Supermassive Black
Holes in the Distant Universe" (2004), ed. A. J. Barger, Kluwer Academic
Publishers, in pres
Simulation of Hydrologic Influences on Wetland Ecosystem Succession
This research focuses on the development of a simulation model to determine the effects of hydrological influences on a wetland ecosystem. The model allows perturbations to the inputs of various wetland data which in turn, influences the successional development of the ecosystem. This research consisted of converting a grassland ecosystem model to one which simulates wetland conditions. The critical factor in determining the success of wetland creation is the hydrology of the system. There are four of the areas of the original model which are affected by the hydrology. The model measures the health or success of the ecosystem through the measurement of the systems gross plant production, the respiration and the net primary production of biomass. Altering the auxiliary variables of water level and the rate of flow through the system explicitly details the affects hydrologic influences on those production rates. Ten case tests depicting exogenous perturbations of the hydrology were run to identify these affects. Although the tests dealt with the fluctuation of water through the system, any one of the auxiliary variables in the model could be changed to reflect site specific data
- …
