1,007 research outputs found
Isolation and mapping of a C3'H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress
Globe artichoke represents a natural source of phenolic compounds with dicaffeoylquinic acids along with their biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the predominant molecules. We report the isolation and characterization of a full-length cDNA and promoter of a globe artichoke p-coumaroyl ester 3¿-hydroxylase (CYP98A49), which is involved in both chlorogenic acid and lignin biosynthesis. Phylogenetic analyses demonstrated that this gene belongs to the CYP98 family. CYP98A49 was also heterologously expressed in yeast, in order to perform an enzymatic assay with p-coumaroylshikimate and p-coumaroylquinate as substrates. Real Time quantitative PCR analysis revealed that CYP98A49 expression is induced upon exposure to UV-C radiation. A single nucleotide polymorphism in the CYP98A49 gene sequence of two globe artichoke varieties used for genetic mapping allowed the localization of this gene to linkage group 10 within the previously developed map
Magnetic order in double-layer manganites (La(1-z)Pr(z))1.2Sr1.8Mn2O7: intrinsic properties and role of the intergrowths
We report on an investigation of the double-layer manganite series
(La(1-z)Pr(z))1.2Sr1.8Mn2O7 (0 <= z <= 1), carried out on single crystals by
means of both macroscopic magnetometry and local probes of magnetism (muSR,
55Mn NMR). Muons and NMR demonstrate an antiferromagnetically ordered ground
state at non-ferromagnetic compositions (z >= 0.6), while more moderate Pr
substitutions (0.2 <= z <= 0.4) induce a spin reorientation transition within
the ferromagnetic phase.
A large magnetic susceptibility is detected at {Tc,TN} < T < 250K at all
compositions. From 55Mn NMR spectroscopy, such a response is unambiguously
assigned to the intergrowth of a ferromagnetic pseudocubic phase
(La(1-z)Pr(z))(1-x)Sr(x)MnO3, with an overall volume fraction estimated as
0.5-0.7% from magnetometry. Evidence is provided for the coupling of the
magnetic moments of these inclusions with the magnetic moments of the
surrounding (La(1-z)Pr(z))1.2Sr1.8Mn2O7 phase, as in the case of finely
dispersed impurities. We argue that the ubiquitous intergrowth phase may play a
role in the marked first-order character of the magnetic transition and the
metamagnetic properties above Tc reported for double-layer manganites.Comment: 11 pages, 9 figures. Submitted to Phys. Rev.
On an exact solution of the Thomas-Fermi equation for a trapped Bose-Einstein condensate with dipole-dipole interactions
We derive an exact solution to the Thomas-Fermi equation for a Bose-Einstein
condensate which has dipole-dipole interactions as well as the usual s-wave
contact interaction, in a harmonic trap. Remarkably, despite the non-local
anisotropic nature of the dipolar interaction the solution is an inverted
parabola, as in the pure s-wave case, but with a different aspect ratio.
Various properties such as electrostriction and stability are discussed.Comment: 11 pages, 5 figure
Observation of Individual Josephson Vortices in YBCO Bicrystal Grain-boundary Junctions
The response of YBCO bicrystal grain-boundary junctions to small dc magnetic
fields (0 - 10 Oe) has been probed with a low-power microwave (rf) signal of
4.4 GHz in a microwave-resonator setup. Peaks in the microwave loss at certain
dc magnetic fields are observed that result from individual Josephson vortices
penetrating into the grain-boundary junctions under study. The system is
modeled as a long Josephson junction described by the sine-Gordon equation with
the appropriate boundary conditions. Excellent quantitative agreement between
the experimental data and the model has been obtained. Hysteresis effect of dc
magnetic field is also studied and the results of measurement and calculation
are compared.Comment: 11 pages, 4 figure
Non-resonant microwave absorption studies of superconducting MgB_2
Non-resonant microwave absorption(NRMA) studies of superconducting MgB_2 at a
frequency of 9.43 GHz in the field range -50 Gauss to 5000 Gauss are reported.
The NRMA results indicate near absence of intergranular weak links. A linear
temperature dependence of the lower critical field H_c1 is observed indicating
a non s-wave superconductivity. However, the phase reversal of the NRMA signal
which could suggest d-wave symmetry is also not observed.Comment: 8 pages, 2 figure
Faraday effect : a field theoretical point of view
We analyze the structure of the vacuum polarization tensor in the presence of
a background electromagnetic field in a medium. We use various discrete
symmetries and crossing symmetry to constrain the form factors obtained for the
most general case. From these symmetry arguments, we show why the vacuum
polarization tensor has to be even in the background field when there is no
background medium. Taking then the background field to be purely magnetic, we
evaluate the vacuum polarization to linear order in it. The result shows the
phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization
of a plane polarized light passing through this background. We find that the
usual expression for Faraday rotation, which is derived for a non-degenerate
plasma in the non-relativistic approximation, undergoes substantial
modification if the background is degenerate and/or relativistic. We give
explicit expressions for Faraday rotation in completely degenerate and
ultra-relativistic media.Comment: 20 pages, Latex, uses axodraw.st
Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant
© Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Critical State Flux Penetration and Linear Microwave Vortex Response in YBa_2Cu_3O_{7-x} Films
The vortex contribution to the dc field (H) dependent microwave surface
impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using
suspended patterned resonators. Z_s(H) is shown to be a direct measure of the
flux density B(H) enabling a very precise test of models of flux penetration.
Three regimes of field-dependent behavior were observed: (1) Initial flux
penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate
fields the flux penetration into the virgin state is in excellent agreement
with calculations based upon the field-induced Bean critical state for thin
film geometry, parametrized by a field scale H_s(4.2K) J_c*d 0.5T, (3) for very
high fields H >>H_s, the flux density is uniform and the measurements enable
direct determination of vortex parameters such as pinning force constants
\alpha_p and vortex viscosity \eta. However hysteresis loops are in
disagreement with the thin film Bean model, and instead are governed by the low
field scale H_i, rather than by H_s. Geometric barriers are insufficient to
account for the observed results.Comment: 20 pages, LaTeX type, Uses REVTeX style files, Submitted to Physical
Review B, 600 dpi PostScript file with high resolution figures available at
http://sagar.physics.neu.edu/preprints.htm
Non-linear microwave impedance of short and long Josephson Junctions
The non-linear dependence on applied field () or current () of the microwave (ac) impedance of both
short and long Josephson junctions is calculated under a variety of excitation
conditions. The dependence on the junction width is studied, for both field
symmetric (current anti-symmetric) and field anti-symmetric (current symmetric)
excitation configurations.The resistance shows step-like features every time a
fluxon (soliton) enters the junction, with a corresponding phase slip seen in
the reactance. For finite widths the interference of fluxons leads to some
interesting effects which are described. Many of these calculated results are
observed in microwave impedance measurements on intrinsic and fabricated
Josephson junctions in the high temperature superconductors, and new effects
are suggested. When a field () or current () is applied,
interesting phase locking effects are observed in the ac impedance
. In particular an almost periodic dependence on the dc bias is
seen similar to that observed in microwave experiments at very low dc field
bias. These results are generic to all systems with a potential
in the overdamped limit and subjected to an ac drive.Comment: 7 pages, 11 figure
Nuclear spin-spin coupling in La_{2-x}Sr_{x}CuO_{4} studied by stimulated echo decay
We have performed copper NQR experiments in high temperature superconductors
YBa_{2}Cu_{4}O_{8}, YBa_{2}Cu_{3}O_{7}, and La_{2-x}Sr_{x}CuO_{4} (x=0.12 and
0.15), using the stimulated echo technique. The stimulated echo intensity is
analyzed by a model that includes the spin-lattice relaxation process (T_ {1
}-process) and the fluctuating local field due to nuclear spin-spin coupling.
The model gives quantitative account of the experimental results in Y-based
compounds using the known values of 1/T_{1} and 1/T_{2G}, the gaussian decay
rate of the spin echo intensity. The same model applied to LSCO enables us to
extract the value of T_{2G}. Our results indicate that T_{1}T/T_{2G} is
independent of temperature, implying that the dynamic exponent is one in
La_{2-x}Sr_{x}CuO_{4}.Comment: 14 pages, 11 fugures, The bibliography field is correcte
- …
