44 research outputs found

    Seismic Waves Generated by Explosions In, and Above, Saturated Sediments: The Foulness Seismoacoustic Coupling Trials

    Get PDF
    Seismic signals generated by near-surface explosions, with sources including industrial accidents and terrorism, are often analysed to assist post-detonation forensic characterization efforts such as estimating explosive yield. Explosively generated seismic displacements are a function of, amongst other factors: the source-to-receiver distance, the explosive yield, the height-of-burst or depth-of-burial of the source and the geological material at the detonation site. Recent experiments in the United States, focusing on ground motion recordings at distances of &lt;![CDATA[$ km from explosive trials, have resulted in empirical models for predicting P-wave displacements generated by explosions in and above hard rock (granite, limestone), dry alluvium, and water. To extend these models to include sources within and above saturated sediments we conducted eight explosions at Foulness, Essex, UK, where m thicknesses of alluvium and clay overlie chalk. These shots, named the Foulness Seismoacoustic Coupling Trials (FSCT), had charge masses of 10 and 100 kg TNT equivalent and were emplaced between 2.3 m below and 1.4 m above the ground surface. Initial P-wave displacements, recorded between 150 and 7000 m from the explosions, exhibit amplitude variations as a function of distance that depart from a single power-law decay relationship. The layered geology at Foulness causes the propagation path that generates the initial P-wave to change as the distance from the source increases, with each path exhibiting different amplitude decay rates as a function of distance. At distances up to 300 m from the source the first arrival is associated with direct propagation through the upper sediments, while beyond 1000 m the initial P-waves are refracted returns from deeper structure. At intermediate distances constructive interference occurs between P-waves propagating through the upper sediments and those returning from velocity-depth gradients at depths between 100 and 300 m. This generates an increase in displacement amplitude, with a maximum at m from the source. Numerical waveform modelling indicates that observations of the amplitude variations is in part the consequence of high P- to S-wave velocity ratios within the upper 150 m of saturated sediment, resulting in temporal separation of the P and S arrivals. We extend a recently developed empirical model formulation to allow for such distance-dependent amplitude variations. Changes in explosive height-of-burst within and above the saturated sediments at Foulness result in large P-wave amplitude variations. FSCT surface explosions exhibit P-wave displacement amplitudes that are a factor of 22 smaller than coupled explosions at depth, compared to factors of 2.3 and 7.6 reported for dry alluvium and granite, respectively.</p

    Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station

    Get PDF
    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at &sim;30GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.</p

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station

    Get PDF
    A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above &sim;200GeV the positron fraction no longer exhibits an increase with energy.</p

    Precision Measurement of the (e++e−) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    We present a measurement of the cosmic ray (e++e-) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e++e-) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct information. Above 30.2 GeV, the flux can be described by a single power law with a spectral index &gamma;=-3.170&plusmn;0.008(stat+syst)&plusmn;0.008(energyscale).</p

    Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.</p

    Left Sciatic Neuropathy After Cesarean Delivery in an Obese, Diabetic Patient

    No full text

    Extra-gastrointestinal stromal tumor of the pancreas

    No full text
    Background: Primary pancreatic gastrointestinal stromal tumors are very rare. Here in we present a malignat extragastrointestinal tumor of the pancreas that was managed multi-disciplinarily. Case presentation: A 64 -year -old male patient presented with a several month history of progressive fatique, nausea, loss of appetite and weight loss. Physical examination revealed a large, painless and smoooth epigastric mass. Laboratory data including tumour markers were within normal limits except a mild anemia. An abdominal CT scan revealed a predominantly cystic mass with solid component that had a 22x14 cm in size originating from body of the pancreas. The patient underwent laparotomy and distal pancreatectomy, splenectomy and wedge resection over gastric wall was made. Pathology revealed a malignant extragastrointestinal tumor of the pancreas. During follow-up period of two years, metastases located on 6-7th segment of liver was detected. Patient was treated as adjuvant by imatinib mesylate. Eventhuogh that adjuvant treatment, liver metastases showed progression. Five years after the first initial diagnosis, patient was reoperated for metastatectomy and bisegmentectomy, cholecystectomy and Roux en Y hepaticojejenostomy was made Postoperative period was uneventful and adjuvant imatinib mesylate treatment (400 mg bid) was continued. During follow-up period of 34 months following second surgery, multiple hepatic metasteses were detected and he was death due to multiple organ failure 8 years after initial diagnosis. Conclusion: Although rare in the pancreas, GIST should be considered in differential diagnosis of pancreatic masses and GIST patients with liver metastases require combined multimodal management from the outset
    corecore