2,550 research outputs found
Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals
We present a method to integrate the equations of motion that govern bound,
accelerated orbits in Schwarzschild spacetime. At each instant the true
worldline is assumed to lie tangent to a reference geodesic, called an
osculating orbit, such that the worldline evolves smoothly from one such
geodesic to the next. Because a geodesic is uniquely identified by a set of
constant orbital elements, the transition between osculating orbits corresponds
to an evolution of the elements. In this paper we derive the evolution
equations for a convenient set of orbital elements, assuming that the force
acts only within the orbital plane; this is the only restriction that we impose
on the formalism, and we do not assume that the force must be small. As an
application of our method, we analyze the relative motion of two massive
bodies, assuming that one body is much smaller than the other. Using the hybrid
Schwarzschild/post-Newtonian equations of motion formulated by Kidder, Will,
and Wiseman, we treat the unperturbed motion as geodesic in a Schwarzschild
spacetime whose mass parameter is equal to the system's total mass. The force
then consists of terms that depend on the system's reduced mass. We highlight
the importance of conservative terms in this force, which cause significant
long-term changes in the time-dependence and phase of the relative orbit. From
our results we infer some general limitations of the radiative approximation to
the gravitational self-force, which uses only the dissipative terms in the
force.Comment: 18 pages, 6 figures, final version to be published in Physical Review
Report of the internally-commissioned external review of the Africa RISING project in the Ethiopian Highlands
Formation of Pillars at the Boundaries between H II Regions and Molecular Clouds
We investigate numerically the hydrodynamic instability of an ionization
front (IF) accelerating into a molecular cloud, with imposed initial
perturbations of different amplitudes. When the initial amplitude is small, the
imposed perturbation is completely stabilized and does not grow. When the
initial perturbation amplitude is large enough, roughly the ratio of the
initial amplitude to wavelength is greater than 0.02, portions of the IF
temporarily separate from the molecular cloud surface, locally decreasing the
ablation pressure. This causes the appearance of a large, warm HI region and
triggers nonlinear dynamics of the IF. The local difference of the ablation
pressure and acceleration enhances the appearance and growth of a multimode
perturbation. The stabilization usually seen at the IF in the linear regimes
does not work due to the mismatch of the modes of the perturbations at the
cloud surface and in density in HII region above the cloud surface. Molecular
pillars are observed in the late stages of the large amplitude perturbation
case. The velocity gradient in the pillars is in reasonably good agreement with
that observed in the Eagle Nebula. The initial perturbation is imposed in three
different ways: in density, in incident photon number flux, and in the surface
shape. All cases show both stabilization for a small initial perturbation and
large growth of the second harmonic by increasing amplitude of the initial
perturbation above a critical value.Comment: 21 pages, 8 figures, accepted for publication in ApJ. high resolution
figures available upon reques
The self-consistent gravitational self-force
I review the problem of motion for small bodies in General Relativity, with
an emphasis on developing a self-consistent treatment of the gravitational
self-force. An analysis of the various derivations extant in the literature
leads me to formulate an asymptotic expansion in which the metric is expanded
while a representative worldline is held fixed; I discuss the utility of this
expansion for both exact point particles and asymptotically small bodies,
contrasting it with a regular expansion in which both the metric and the
worldline are expanded. Based on these preliminary analyses, I present a
general method of deriving self-consistent equations of motion for arbitrarily
structured (sufficiently compact) small bodies. My method utilizes two
expansions: an inner expansion that keeps the size of the body fixed, and an
outer expansion that lets the body shrink while holding its worldline fixed. By
imposing the Lorenz gauge, I express the global solution to the Einstein
equation in the outer expansion in terms of an integral over a worldtube of
small radius surrounding the body. Appropriate boundary data on the tube are
determined from a local-in-space expansion in a buffer region where both the
inner and outer expansions are valid. This buffer-region expansion also results
in an expression for the self-force in terms of irreducible pieces of the
metric perturbation on the worldline. Based on the global solution, these
pieces of the perturbation can be written in terms of a tail integral over the
body's past history. This approach can be applied at any order to obtain a
self-consistent approximation that is valid on long timescales, both near and
far from the small body. I conclude by discussing possible extensions of my
method and comparing it to alternative approaches.Comment: 44 pages, 4 figure
Waves on the surface of the Orion molecular cloud
Massive stars influence their parental molecular cloud, and it has long been
suspected that the development of hydrodynamical instabilities can compress or
fragment the cloud. Identifying such instabilities has proved difficult. It has
been suggested that elongated structures (such as the `pillars of creation')
and other shapes arise because of instabilities, but alternative explanations
are available. One key signature of an instability is a wave-like structure in
the gas, which has hitherto not been seen. Here we report the presence of
`waves' at the surface of the Orion molecular cloud near where massive stars
are forming. The waves seem to be a Kelvin-Helmholtz instability that arises
during the expansion of the nebula as gas heated and ionized by massive stars
is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur
Gravitational redshift of galaxies in clusters as predicted by general relativity
The theoretical framework of cosmology is mainly defined by gravity, of which
general relativity is the current model. Recent tests of general relativity
within the \Lambda Cold Dark Matter (CDM) model have found a concordance
between predictions and the observations of the growth rate and clustering of
the cosmic web. General relativity has not hitherto been tested on cosmological
scales independent of the assumptions of the \Lambda CDM model. Here we report
observation of the gravitational redshift of light coming from galaxies in
clusters at the 99 per cent confidence level, based upon archival data. The
measurement agrees with the predictions of general relativity and its
modification created to explain cosmic acceleration without the need for dark
energy (f(R) theory), but is inconsistent with alternative models designed to
avoid the presence of dark matter.Comment: Published in Nature issued on 29 September 2011. This version
includes the Letter published there as well as the Supplementary Information.
23 pages, 7 figure
Sources of Sex Information Used by Young British Women Who Have Sex with Women (WSW) and Women Who Have Sex Exclusively with Men (WSEM): Evidence from the National Survey of Sexual Attitudes and Lifestyles
There is little consideration about the provision of information about sex to women who have sex with women (WSW). This study drew on data from the third National Survey of Sexual Attitudes and Lifestyle, a nationally representative survey of people in Great Britain. Logistic regression was undertaken to examine firstly the relationships between WSW and women who have sex exclusively with men (WSEM) and their main source of information about sex, and secondly between WSW/WSEM and unmet need for information about sex. Each source was included as the binary outcome indicating yes this was the main source, or no this was not the main source of information about sex. The results found that WSW had significantly lower odds of reporting lessons at schools as their main source of information, and significantly higher odds of reporting sources defined as ‘other’ (predominantly first girlfriend/boyfriend or sexual partner) as their main source of information. Reported levels of unmet need for information was also higher amongst young WSW compared with WSEM. This study provides new insights into the sex educational needs of young women and highlights the need for sex education in schools in Great Britain to include information on a full-range of sexual practices, including same-sex sexual relationships
Tracing the Bipolar Outflow from Orion Source I
Using CARMA, we imaged the 87 GHz SiO v=0 J=2-1 line toward Orion-KL with
0.45 arcsec angular resolution. The maps indicate that radio source I drives a
bipolar outflow into the surrounding molecular cloud along a NE--SW axis, in
agreement with the model of Greenhill et al. (2004). The extended high velocity
outflow from Orion-KL appears to be a continuation of this compact outflow.
High velocity gas extends farthest along a NW--SE axis, suggesting that the
outflow direction changes on time scales of a few hundred years.Comment: 4 pages, 4 figures; accepted for publication in Ap J Letter
Signatures of Young Star Formation Activity Within Two Parsecs of Sgr A*
We present radio and infrared observations indicating on-going star formation
activity inside the pc circumnuclear ring at the Galactic center.
Collectively these measurements suggest a continued disk-based mode of on-going
star formation has taken place near Sgr A* over the last few million years.
First, VLA observations with spatial resolution 2.17 reveal 13
water masers, several of which have multiple velocity components. The presence
of interstellar water masers suggests gas densities that are sufficient for
self-gravity to overcome the tidal shear of the 4 \msol\, black
hole. Second, SED modeling of stellar sources indicate massive YSO candidates
interior to the molecular ring, supporting in-situ star formation near Sgr A*
and appear to show a distribution similar to that of the counter-rotating disks
of 100 OB stars orbiting Sgr A*. Some YSO candidates (e.g., IRS~5) have
bow shock structures suggesting that they have have gaseous disks that are
phototoevaporated and photoionized by the strong radiation field. Third, we
detect clumps of SiO (2-1) and (5-4) line emission in the ring based on CARMA
and SMA observations. The FWHM and luminosity of the SiO emission is consistent
with shocked protostellar outflows. Fourth, two linear ionized features with an
extent of pc show blue and redshifted velocities between and
\kms, suggesting protostellar jet driven outflows with mass loss rates of
solar mass yr. Finally, we present the imprint of
radio dark clouds at 44 GHz, representing a reservoir of molecular gas that
feeds star formation activity close to Sgr A*.Comment: 38 pages, 10 figures, ApJ (in press
A patch-based approach to 3D plant shoot phenotyping
The emerging discipline of plant phenomics aims to measure key plant characteristics, or traits, though as yet the set of plant traits that should be measured by automated systems is not well defined. Methods capable of recovering generic representations of the 3D structure of plant shoots from images would provide a key technology underpinning quantification of a wide range of current and future physiological and morphological traits. We present a fully automatic approach to image-based 3D plant reconstruction which represents plants as series of small planar sections that together model the complex architecture of leaf surfaces. The initial boundary of each leaf patch is refined using a level set method, optimising the model based on image information, curvature constraints and the position of neighbouring surfaces. The reconstruction process makes few assumptions about the nature of the plant material being reconstructed. As such it is applicable to a wide variety of plant species and topologies, and can be extended to canopy-scale imaging. We demonstrate the effectiveness of our approach on real images of wheat and rice plants, an artificial plant with challenging architecture, as well as a novel virtual dataset that allows us to compute distance measures of reconstruction accuracy. We also illustrate the method’s potential to support the identification of individual leaves, and so the phenotyping of plant shoots, using a spectral clustering approach
- …
