1,855 research outputs found
On the two-dimensional stability of the axisymmetric Burgers vortex
The stability of the axisymmetric Burgers vortex solution of the Navier–Stokes equations to two-dimensional perturbations is studied numerically up to Reynolds numbers, R=Gamma/2pinu, of order 104. No unstable eigenmodes for azimuthal mode numbers n=1,..., 10 are found in this range of Reynolds numbers. Increasing the Reynolds number has a stabilizing effect on the vortex
Perdeuterated cyanobiphenyl liquid crystals for infrared applications
Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications
Three-dimensional stability of Burgers vortices
Burgers vortices are explicit stationary solutions of the Navier-Stokes
equations which are often used to describe the vortex tubes observed in
numerical simulations of three-dimensional turbulence. In this model, the
velocity field is a two-dimensional perturbation of a linear straining flow
with axial symmetry. The only free parameter is the Reynolds number , where is the total circulation of the vortex and is
the kinematic viscosity. The purpose of this paper is to show that Burgers
vortex is asymptotically stable with respect to general three-dimensional
perturbations, for all values of the Reynolds number. This definitive result
subsumes earlier studies by various authors, which were either restricted to
small Reynolds numbers or to two-dimensional perturbations. Our proof relies on
the crucial observation that the linearized operator at Burgers vortex has a
simple and very specific dependence upon the axial variable. This allows to
reduce the full linearized equations to a vectorial two-dimensional problem,
which can be treated using an extension of the techniques developped in earlier
works. Although Burgers vortices are found to be stable for all Reynolds
numbers, the proof indicates that perturbations may undergo an important
transient amplification if is large, a phenomenon that was indeed observed
in numerical simulations.Comment: 31 pages, no figur
Submicron silicon powder production in an aerosol reactor
Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1–0.2 µm size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1% of the spherules
On the three-dimensional temporal spectrum of stretched vortices
The three-dimensional stability problem of a stretched stationary vortex is
addressed in this letter. More specifically, we prove that the discrete part of
the temporal spectrum is only associated with two-dimensional perturbations.Comment: 4 pages, RevTeX, submitted to PR
Patterns of gene flow and selection across multiple species of Acrocephalus warblers: footprints of parallel selection on the Z chromosome
201
Control of an Active Suspension System as a Benchmark for Design and Optimization of Restricted Complexity Controllers
A benchmark problem for restricted complexity controller design is introduced. The objective is to design the lowest-order controller which meets the control specifications for an active suspension system. The input-output data of the plant are provided on the benchmark site and the final controllers are evaluated using the closed-loop data. Thirteen solutions proposed to solve the benchmark problem are briefly presented and classified in terms of methodology and compared with respect to their complexity and performance
Detection of Voigt Spectral Line Profiles of Hydrogen Radio Recombination Lines toward Sagittarius B2(N)
We report the detection of Voigt spectral line profiles of radio
recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank
Telescope (GBT). At radio wavelengths, astronomical spectra are highly
populated with RRLs, which serve as ideal probes of the physical conditions in
molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein
shows that RRLs of higher principal quantum number (n>90) are generally
divergent from their expected Gaussian profiles and, moreover, are well
described by their respective Voigt profiles. This is in agreement with the
theory that spectral lines experience pressure broadening as a result of
electron collisions at lower radio frequencies. Given the inherent technical
difficulties regarding the detection and profiling of true RRL wing spans and
shapes, it is crucial that the observing instrumentation produce flat baselines
as well as high sensitivity, high resolution data. The GBT has demonstrated its
capabilities regarding all of these aspects, and we believe that future
observations of RRL emission via the GBT will be crucial towards advancing our
knowledge of the larger-scale extended structures of ionized gas in the
interstellar medium (ISM)
Forward Physics at the LHC (Elba 2010)
The papers review the main theoretical and experimental aspects of the
Forward Physics at the Large Hadron Collider
- …
