1,855 research outputs found

    On the two-dimensional stability of the axisymmetric Burgers vortex

    Get PDF
    The stability of the axisymmetric Burgers vortex solution of the Navier–Stokes equations to two-dimensional perturbations is studied numerically up to Reynolds numbers, R=Gamma/2pinu, of order 104. No unstable eigenmodes for azimuthal mode numbers n=1,..., 10 are found in this range of Reynolds numbers. Increasing the Reynolds number has a stabilizing effect on the vortex

    Perdeuterated cyanobiphenyl liquid crystals for infrared applications

    Get PDF
    Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications

    Three-dimensional stability of Burgers vortices

    Full text link
    Burgers vortices are explicit stationary solutions of the Navier-Stokes equations which are often used to describe the vortex tubes observed in numerical simulations of three-dimensional turbulence. In this model, the velocity field is a two-dimensional perturbation of a linear straining flow with axial symmetry. The only free parameter is the Reynolds number Re=Γ/νRe = \Gamma/\nu, where Γ\Gamma is the total circulation of the vortex and ν\nu is the kinematic viscosity. The purpose of this paper is to show that Burgers vortex is asymptotically stable with respect to general three-dimensional perturbations, for all values of the Reynolds number. This definitive result subsumes earlier studies by various authors, which were either restricted to small Reynolds numbers or to two-dimensional perturbations. Our proof relies on the crucial observation that the linearized operator at Burgers vortex has a simple and very specific dependence upon the axial variable. This allows to reduce the full linearized equations to a vectorial two-dimensional problem, which can be treated using an extension of the techniques developped in earlier works. Although Burgers vortices are found to be stable for all Reynolds numbers, the proof indicates that perturbations may undergo an important transient amplification if ReRe is large, a phenomenon that was indeed observed in numerical simulations.Comment: 31 pages, no figur

    Submicron silicon powder production in an aerosol reactor

    Get PDF
    Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1–0.2 µm size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1% of the spherules

    On the three-dimensional temporal spectrum of stretched vortices

    Full text link
    The three-dimensional stability problem of a stretched stationary vortex is addressed in this letter. More specifically, we prove that the discrete part of the temporal spectrum is only associated with two-dimensional perturbations.Comment: 4 pages, RevTeX, submitted to PR

    Control of an Active Suspension System as a Benchmark for Design and Optimization of Restricted Complexity Controllers

    Get PDF
    A benchmark problem for restricted complexity controller design is introduced. The objective is to design the lowest-order controller which meets the control specifications for an active suspension system. The input-output data of the plant are provided on the benchmark site and the final controllers are evaluated using the closed-loop data. Thirteen solutions proposed to solve the benchmark problem are briefly presented and classified in terms of methodology and compared with respect to their complexity and performance

    Detection of Voigt Spectral Line Profiles of Hydrogen Radio Recombination Lines toward Sagittarius B2(N)

    Full text link
    We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein shows that RRLs of higher principal quantum number (n>90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high sensitivity, high resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial towards advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM)

    In-beam test of the TwinTPC at FRS

    Get PDF
    corecore