584 research outputs found

    Algebraic arctic curves in the domain-wall six-vertex model

    Full text link
    The arctic curve, i.e. the spatial curve separating ordered (or `frozen') and disordered (or `temperate) regions, of the six-vertex model with domain wall boundary conditions is discussed for the root-of-unity vertex weights. In these cases the curve is described by algebraic equations which can be worked out explicitly from the parametric solution for this curve. Some interesting examples are discussed in detail. The upper bound on the maximal degree of the equation in a generic root-of-unity case is obtained.Comment: 15 pages, no figures; v2: metadata correcte

    Classification using distance nearest neighbours

    Get PDF
    This paper proposes a new probabilistic classification algorithm using a Markov random field approach. The joint distribution of class labels is explicitly modelled using the distances between feature vectors. Intuitively, a class label should depend more on class labels which are closer in the feature space, than those which are further away. Our approach builds on previous work by Holmes and Adams (2002, 2003) and Cucala et al. (2008). Our work shares many of the advantages of these approaches in providing a probabilistic basis for the statistical inference. In comparison to previous work, we present a more efficient computational algorithm to overcome the intractability of the Markov random field model. The results of our algorithm are encouraging in comparison to the k-nearest neighbour algorithm.Comment: 12 pages, 2 figures. To appear in Statistics and Computin

    Functional relations for the six vertex model with domain wall boundary conditions

    Full text link
    In this work we demonstrate that the Yang-Baxter algebra can also be employed in order to derive a functional relation for the partition function of the six vertex model with domain wall boundary conditions. The homogeneous limit is studied for small lattices and the properties determining the partition function are also discussed.Comment: 19 pages, v2: typos corrected, new section and appendix added. v3: minor corrections, to appear in J. Stat. Mech

    The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime

    Full text link
    An explicit expression for the spatial curve separating the region of ferroelectric order (`frozen' zone) from the disordered one (`temperate' zone) in the six-vertex model with domain wall boundary conditions in its anti-ferroelectric regime is obtained.Comment: 12 pages, 1 figur

    On the partition function of the six-vertex model with domain wall boundary conditions

    Full text link
    The six-vertex model on an N×NN\times N square lattice with domain wall boundary conditions is considered. A Fredholm determinant representation for the partition function of the model is given. The kernel of the corresponding integral operator is of the so-called integrable type, and involves classical orthogonal polynomials. From this representation, a ``reconstruction'' formula is proposed, which expresses the partition function as the trace of a suitably chosen quantum operator, in the spirit of corner transfer matrix and vertex operator approaches to integrable spin models.Comment: typos correcte

    From elongated spanning trees to vicious random walks

    Full text link
    Given a spanning forest on a large square lattice, we consider by combinatorial methods a correlation function of kk paths (kk is odd) along branches of trees or, equivalently, kk loop--erased random walks. Starting and ending points of the paths are grouped in a fashion a kk--leg watermelon. For large distance rr between groups of starting and ending points, the ratio of the number of watermelon configurations to the total number of spanning trees behaves as rνlogrr^{-\nu} \log r with ν=(k21)/2\nu = (k^2-1)/2. Considering the spanning forest stretched along the meridian of this watermelon, we see that the two--dimensional kk--leg loop--erased watermelon exponent ν\nu is converting into the scaling exponent for the reunion probability (at a given point) of kk (1+1)--dimensional vicious walkers, ν~=k2/2\tilde{\nu} = k^2/2. Also, we express the conjectures about the possible relation to integrable systems.Comment: 27 pages, 6 figure

    Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels

    Get PDF
    Monte Carlo algorithms often aim to draw from a distribution π\pi by simulating a Markov chain with transition kernel PP such that π\pi is invariant under PP. However, there are many situations for which it is impractical or impossible to draw from the transition kernel PP. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace PP by an approximation P^\hat{P}. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how 'close' the chain given by the transition kernel P^\hat{P} is to the chain given by PP. We apply these results to several examples from spatial statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain

    Criminal narrative experience: relating emotions to offence narrative roles during crime commission

    Get PDF
    A neglected area of research within criminality has been that of the experience of the offence for the offender. The present study investigates the emotions and narrative roles that are experienced by an offender while committing a broad range of crimes and proposes a model of Criminal Narrative Experience (CNE). Hypotheses were derived from the Circumplex of Emotions (Russell, 1997), Frye (1957), Narrative Theory (McAdams, 1988) and its link with Investigative Psychology (Canter, 1994). The analysis was based on 120 cases. Convicted for a variety of crimes, incarcerated criminals were interviewed and the data were subjected to Smallest Space Analysis (SSA). Four themes of Criminal Narrative Experience (CNE) were identified: Elated Hero, Calm Professional, Distressed Revenger and Depressed Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). The theoretical implications for understanding crime on the basis of the Criminal Narrative Experience (CNE) as well as practical implications are discussed

    Refined Razumov-Stroganov conjectures for open boundaries

    Full text link
    Recently it has been conjectured that the ground-state of a Markovian Hamiltonian, with one boundary operator, acting in a link pattern space is related to vertically and horizontally symmetric alternating-sign matrices (equivalently fully-packed loop configurations (FPL) on a grid with special boundaries).We extend this conjecture by introducing an arbitrary boundary parameter. We show that the parameter dependent ground state is related to refined vertically symmetric alternating-sign matrices i.e. with prescribed configurations (respectively, prescribed FPL configurations) in the next to central row. We also conjecture a relation between the ground-state of a Markovian Hamiltonian with two boundary operators and arbitrary coefficients and some doubly refined (dependence on two parameters) FPL configurations. Our conjectures might be useful in the study of ground-states of the O(1) and XXZ models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure

    The arctic curve of the domain-wall six-vertex model

    Full text link
    The problem of the form of the `arctic' curve of the six-vertex model with domain wall boundary conditions in its disordered regime is addressed. It is well-known that in the scaling limit the model exhibits phase-separation, with regions of order and disorder sharply separated by a smooth curve, called the arctic curve. To find this curve, we study a multiple integral representation for the emptiness formation probability, a correlation function devised to detect spatial transition from order to disorder. We conjecture that the arctic curve, for arbitrary choice of the vertex weights, can be characterized by the condition of condensation of almost all roots of the corresponding saddle-point equations at the same, known, value. In explicit calculations we restrict to the disordered regime for which we have been able to compute the scaling limit of certain generating function entering the saddle-point equations. The arctic curve is obtained in parametric form and appears to be a non-algebraic curve in general; it turns into an algebraic one in the so-called root-of-unity cases. The arctic curve is also discussed in application to the limit shape of qq-enumerated (with 0<q40<q\leq 4) large alternating sign matrices. In particular, as q0q\to 0 the limit shape tends to a nontrivial limiting curve, given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction
    corecore