230 research outputs found

    Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 496-508, doi:10.1002/2013JC009346.Observational studies have shown that an unprecedented warm anomaly has recently affected the temperature of the Atlantic Water (AW) layer lying at intermediate depth in the Arctic Ocean. Using observations from four profiling moorings, deployed in the interior of the Canada Basin between 2003 and 2011, the upward diffusive vertical heat flux from this layer is quantified. Vertical diffusivity is first estimated from a fine-scale parameterization method based on CTD and velocity profiles. Resulting diffusive vertical heat fluxes from the AW are in the range 0.1–0.2 W m−2 on average. Although large over the period considered, the variations of the AW temperature maximum yields small variations for the temperature gradient and thus the vertical diffusive heat flux. In most areas, variations in upward diffusive vertical heat flux from the AW have only a limited effect on temperature variations of the overlying layer. However, the presence of eddies might be an effective mechanism to enhance vertical heat transfer, although the small number of eddies sampled by the moorings suggest that this mechanism remains limited and intermittent in space and time. Finally, our results suggest that computing diffusive vertical heat flux with a constant vertical diffusivity of ∼2 × 10−6 m2 s−1 provides a reasonable estimate of the upward diffusive heat transfer from the AW layer, although this approximation breaks down in the presence of eddies.C. Lique acknowledge support from JISAO and the Program on Climate Change of the University of Washington. J. Guthrie and J. Morison are supported by National Science Foundation grants ARC-0909408 and ARC-0856330. M. Steele is supported by the Office of Naval Researches Arctic and Global Prediction Program, by NSFs Division of Polar Programs, and by NASAs Cryosphere and Physical Oceanography programs. Support for the BGOS program and R. Krishfield was provided by the National Science Foundation (under grants ARC-0806115, ARC-0631951, ARC-0806306, and ARC-0856531) and Woods Hole Oceanographic Institution internal funding. For A. Proshutinsky, this research is supported by the National Science Foundation Office of Polar Programs, awards ARC-1203720 and ARC-0856531.2014-07-2

    Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 1271-1305, doi:10.1002/2013JC008999.Time series of ice draft from 2003 to 2012 from moored sonar data are used to investigate variability and describe the reduction of the perennial sea ice cover in the Beaufort Gyre (BG), culminating in the extreme minimum in 2012. Negative trends in median ice drafts and most ice fractions are observed, while open water and thinnest ice fractions (<0.3 m) have increased, attesting to the ablation or removal of the older sea ice from the BG over the 9 year period. Monthly anomalies indicate a shift occurred toward thinner ice after 2007, in which the thicker ice evident at the northern stations was reduced. Differences in the ice characteristics between all of the stations also diminished, so that the ice cover throughout the region became statistically homogenous. The moored data are used in a relationship with satellite radiometer data to estimate ice volume changes throughout the BG. Summer solid fresh water content decreased drastically in consecutive years from 730 km3 in 2006 to 570 km3 in 2007, and to 240 km3 in 2008. After a short rebound, solid fresh water fell below 220 km3 in 2012. Meanwhile, hydrographic data indicate that liquid fresh water in the BG in summer increased 5410 km3 from 2003 to 2010 and decreased at least 210 km3 by 2012. The reduction of both solid and liquid fresh water components indicates a net export of approximately 320 km3 of fresh water from the region occurred between 2010 and 2012, suggesting that the anticyclonic atmosphere-ocean circulation has weakened.Support for Krishfield, Proshutinsky, and Timmermans, partial financial support of logistics, hydrographic observations on the board of Canadian icebreaker, and full financial coverage of all mooring instrumentation was provided by the National Science Foundation (under grants OPP-0230184, OPP-0424864, ARC-0722694, ARC-0806306, ARC- 0856531, ARC-1107277, and ARC- 1203720), and Woods Hole Oceanographic Institution internal funding. Funding for Tateyama was provided by the International Arctic Research Center – Japan Aerospace Exploration Agency (IJIS) Arctic project, and for Williams, Carmack, and McLaughlin by Fisheries and Oceans Canada

    Characterizing the eddy field in the Arctic Ocean halocline

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8800–8817, doi:10.1002/2014JC010488.Ice-Tethered Profilers (ITP), deployed in the Arctic Ocean between 2004 and 2013, have provided detailed temperature and salinity measurements of an assortment of halocline eddies. A total of 127 mesoscale eddies have been detected, 95% of which were anticyclones, the majority of which had anomalously cold cores. These cold-core anticyclonic eddies were observed in the Beaufort Gyre region (Canadian water eddies) and the vicinity of the Transpolar Drift Stream (Eurasian water eddies). An Arctic-wide calculation of the first baroclinic Rossby deformation radius Rd has been made using ITP data coupled with climatology; Rd ∼ 13 km in the Canadian water and ∼8 km in the Eurasian water. The observed eddies are found to have scales comparable to Rd. Halocline eddies are in cyclogeostrophic balance and can be described by a Rankine vortex with maximum azimuthal speeds between 0.05 and 0.4 m/s. The relationship between radius and thickness for the eddies is consistent with adjustment to the ambient stratification. Eddies may be divided into four groups, each characterized by distinct core depths and core temperature and salinity properties, suggesting multiple source regions and enabling speculation of varying formation mechanisms.Funding was provided by the National Science Foundation Polar Programs award ARC-1107623.2015-06-2

    Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 1271-1305, doi:10.1002/2013JC008999.Time series of ice draft from 2003 to 2012 from moored sonar data are used to investigate variability and describe the reduction of the perennial sea ice cover in the Beaufort Gyre (BG), culminating in the extreme minimum in 2012. Negative trends in median ice drafts and most ice fractions are observed, while open water and thinnest ice fractions (<0.3 m) have increased, attesting to the ablation or removal of the older sea ice from the BG over the 9 year period. Monthly anomalies indicate a shift occurred toward thinner ice after 2007, in which the thicker ice evident at the northern stations was reduced. Differences in the ice characteristics between all of the stations also diminished, so that the ice cover throughout the region became statistically homogenous. The moored data are used in a relationship with satellite radiometer data to estimate ice volume changes throughout the BG. Summer solid fresh water content decreased drastically in consecutive years from 730 km3 in 2006 to 570 km3 in 2007, and to 240 km3 in 2008. After a short rebound, solid fresh water fell below 220 km3 in 2012. Meanwhile, hydrographic data indicate that liquid fresh water in the BG in summer increased 5410 km3 from 2003 to 2010 and decreased at least 210 km3 by 2012. The reduction of both solid and liquid fresh water components indicates a net export of approximately 320 km3 of fresh water from the region occurred between 2010 and 2012, suggesting that the anticyclonic atmosphere-ocean circulation has weakened.Support for Krishfield, Proshutinsky, and Timmermans, partial financial support of logistics, hydrographic observations on the board of Canadian icebreaker, and full financial coverage of all mooring instrumentation was provided by the National Science Foundation (under grants OPP-0230184, OPP-0424864, ARC-0722694, ARC-0806306, ARC- 0856531, ARC-1107277, and ARC- 1203720), and Woods Hole Oceanographic Institution internal funding. Funding for Tateyama was provided by the International Arctic Research Center – Japan Aerospace Exploration Agency (IJIS) Arctic project, and for Williams, Carmack, and McLaughlin by Fisheries and Oceans Canada

    Mechanisms of Pacific Summer Water variability in the Arctic's Central Canada Basin

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 7523–7548, doi:10.1002/2014JC010273.Pacific Water flows northward through Bering Strait and penetrates the Arctic Ocean halocline throughout the Canadian Basin sector of the Arctic. In summer, Pacific Summer Water (PSW) is modified by surface buoyancy fluxes and mixing as it crosses the shallow Chukchi Sea before entering the deep ocean. Measurements from Ice-Tethered Profilers, moorings, and hydrographic surveys between 2003 and 2013 reveal spatial and temporal variability in the PSW component of the halocline in the Central Canada Basin with increasing trends in integrated heat and freshwater content, a consequence of PSW layer thickening as well as layer freshening and warming. It is shown here how properties in the Chukchi Sea in summer control the temperature-salinity properties of PSW in the interior by subduction at isopycnals that outcrop in the Chukchi Sea. Results of an ocean model, forced by idealized winds, provide support to the mechanism of surface ocean Ekman transport convergence maintaining PSW ventilation of the halocline.Funding was provided by the National Science Foundation Division of Polar Programs under award 1107623, 1313614, 1107412, 1107277, 1303644, and 0938137 and by Yale University. ICMMG model development was supported by the Russian Fund for Basic Research (14-05-00730A)

    Freshwater content variability in the Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03051, doi:10.1029/2003JC001940.Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin-wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation (AOO)) that has a prominent decadal variability [Proshutinsky and Johnson, 1997]. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice [Häkkinen and Mellor, 1992; Häkkinen, 1999]. The surface forcing is based on National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide freshwater balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated freshwater anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice melt/freeze anomalies in response to AO are less significant considering the whole Arctic freshwater balance.We gratefully acknowledge the support from National Science Foundation under Grant No OPP-0230184 (AP) and from NASA Headquarters (SH)

    Arctic Ocean fresh water changes over the past 100 years and their causes

    Get PDF
    Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability
    corecore