357 research outputs found
Blood pressure reduction and recovery of stunned myocardium in the hypertrophied hypertensive heart
Digitalitzat per Artypla
Recommended from our members
Point-of-care assessment of platelet reactivity in the emergency department may facilitate rapid rule-out of acute coronary syndromes: a prospective cohort pilot feasibility study
Objective: Accurate, efficient and cost-effective disposition of patients presenting to emergency departments (EDs) with symptoms suggestive of acute coronary syndromes (ACS) is a growing priority. Platelet activation is an early feature in the pathogenesis of ACS; thus, we sought to obtain an insight into whether point-of-care testing of platelet function: (1) may assist in the rule-out of ACS; (2) may provide additional predictive value in identifying patients with non-cardiac symptoms versus ACS-positive patients and (3) is logistically feasible in the ED. Design: Prospective cohort feasibility study. Setting: Two urban tertiary care sites, one located in the USA and the second in Argentina. Participants: 509 adult patients presenting with symptoms of ACS. Main outcome measures Platelet reactivity was quantified using the Platelet Function Analyzer-100, with closure time (seconds required for blood, aspirated under high shear, to occlude a 150 µm aperture) serving as the primary endpoint. Closure times were categorised as ‘normal’ or ‘prolonged’, defined objectively as the 90th centile of the distribution for all participants enrolled in the study. Diagnosis of ACS was made using the standard criteria. The use of antiplatelet agents was not an exclusion criterion. Results: Closure times for the study population ranged from 47 to 300 s, with a 90th centile value of 138 s. The proportion of patients with closure times ≥138 s was significantly higher in patients with non-cardiac symptoms (41/330; 12.4%) versus the ACS-positive cohort (2/105 (1.9%); p=0.0006). The specificity of ‘prolonged’ closure times (≥138 s) for a diagnosis of non-cardiac symptoms was 98.1%, with a positive predictive value of 95.4%. Multivariate analysis revealed that the closure time provided incremental, independent predictive value in the rule-out of ACS. Conclusions: Point-of-care assessment of platelet reactivity is feasible in the ED and may facilitate the rapid rule-out of ACS in patients with prolonged closure times
European Metrology Network (EMN) for Advanced Manufacturing
The European Metrology Network (EMN) for Advanced Manufacturing has been established in June 2021. Currently 11 EMNs focussing on different important topics of strategic importance for Europe exist and form an integral part of EURAMET, the European Association of National Metrology Institutes (NMI). EMNs are tasked to
- develop a high-level coordination of the metrology community in Europe in a close dialogue with the respective stakeholders (SH)
- develop a Strategic Research Agenda (SRA) within their thematic areas
- provide contributions to the European Partnership on Metrology research programme
Based on the analysis of existing metrology infrastructures and capabilities of NMIs, the metrology research needs for advanced manufacturing are identified in close cooperation with academic, governmental and industrial stakeholders. Here, we report on advanced materials metrology needs addressed in the EMNs preliminary SRA
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Holistic evaluation of involute gear surfaces using 3D point cloud inversion
Gear users desire increased performance from their products and are interested in predicting the behavior (vibration, loss, service life, etc), and gear manufacturers are interested in adjusting machining parameters to manufacture even better gears. Both require proficient metrology. The evaluation standards were originally written to classify the manufacturing capability of machine tools and as tolerances tighten they may not provide enough insight into the functional performance of the manufactured parts. Furthermore, the advantage of modern coordinate and gear measuring machines is not fully taken into account when applying standardized measurement and evaluation strategies. Improved analysis tools can increase the relevant information gained from current measurement capabilities and enable more useful functional characteristics to be specified by designers and manufacturers. A key improvement is to move from profile and helix line traces to flank surfaces and corresponding fitted form elements. This is achieved by the introduced method. We present an inversion algorithm that fits dimension, form, and pose, and is applicable with current methods through freezing of specific fitting parameters. The method fits a synthetic point cloud with output results that are accurate to the 7th digit, or in practical terms are numerically equal. The inversion method can increase the understanding of error contributions and the functional performance of gears
Characterisation and evaluation of the harmonic content of involute gear surface deviations
Gears are fundamental precision components that are crucial to many industries, including the wind energy sector. They are traditionally analysed using profile and helix line measurements but this does not consider the majority of the contacting surface with intricate surface variations that dictate functional performance. Practical measurement and evaluation of involute gear surfaces remain underexplored. This paper uses the Fourier and wavelet transforms to evaluate measured gear surface deviation harmonic content for a single trace, a trace set, and surface analysis and describes the utility of each. The methods are first demonstrated with synthetic data and then with measured data, then the measured data is simulated in a quasi-static FE tooth contact analysis, which yields insights not solely gleaned from harmonic analysis. The uncertainty of harmonic content analysis is to be established in future work and how that effects the uncertainty of simulated functional performance should be investigated
New European Metrology Network for advanced manufacturing
Advanced manufacturing has been identified as one of the key enabling technologies with applications in multiple industries. The growing importance of advanced manufacturing is reflected by an increased number of publications on this topic in recent years. Advanced manufacturing requires new and enhanced metrology methods to assure the quality of manufacturing processes and the resulting products. However, a high-level coordination of the metrology community is currently absent in this field and consequently this limits the impact of metrology developments on advanced manufacturing. In this article we introduce the new European Metrology Network (EMN) for Advanced Manufacturing within EURAMET, the European Association of National Metrology Institutes (NMIs). The EMN is intended to be operated sustainably by NMIs and Designated Institutes in close cooperation with stakeholders interested in advanced manufacturing. The objectives of the EMN are to set up a permanent stakeholder dialogue, to develop a Strategic Research Agenda for the metrology input required for advanced manufacturing technologies, to create and maintain a knowledge sharing programme and to implement a web-based service desk for stakeholders. The EMN development is supported by a Joint Network Project within the European Metrology Programme for Innovation and Research
Ischemic Preconditioning in the Animal Kidney, a Systematic Review and Meta-Analysis
Ischemic preconditioning (IPC) is a potent renoprotective strategy which has not yet been translated successfully into clinical practice, in spite of promising results in animal studies. We performed a unique systematic review and meta-analysis of animal studies to identify factors modifying IPC efficacy in renal ischemia/reperfusion injury (IRI), in order to enhance the design of future (clinical) studies. An electronic literature search for animal studies on IPC in renal IRI yielded fifty-eight studies which met our inclusion criteria. We extracted data for serum creatinine, blood urea nitrogen and histological renal damage, as well as study quality indicators. Meta-analysis showed that IPC reduces serum creatinine (SMD 1.54 [95%CI 1.16, 1.93]), blood urea nitrogen (SMD 1.42 [95% CI 0.97, 1.87]) and histological renal damage (SMD 1.12 [95% CI 0.89, 1.35]) after IRI as compared to controls. Factors influencing IPC efficacy were the window of protection (<24 h = early vs. ≥24 h = late) and animal species (rat vs. mouse). No difference in efficacy between local and remote IPC was observed. In conclusion, our findings show that IPC effectively reduces renal damage after IRI, with higher efficacy in the late window of protection. However, there is a large gap in study data concerning the optimal window of protection, and IPC efficacy may differ per animal species. Moreover, current clinical trials on RIPC may not be optimally designed, and our findings identify a need for further standardization of animal experiments
- …
