541 research outputs found
Ccdc94 Protects Cells from Ionizing Radiation by Inhibiting the Expression of p53
DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB–DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR–induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR–induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB–DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR–induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR–induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response
Optics of Nonuniformly Moving Media
A moving dielectric appears to light as an effective gravitational field. At
low flow velocities the dielectric acts on light in the same way as a magnetic
field acts on a charged matter wave. We develop in detail the geometrical
optics of moving dispersionless media. We derive a Hamiltonian and a Lagrangian
to describe ray propagation. We elucidate how the gravitational and the
magnetic model of light propagation are related to each other. Finally, we
study light propagation around a vortex flow. The vortex shows an optical
Aharonov--Bohm effect at large distances from the core, and, at shorter ranges,
the vortex may resemble an optical black hole.Comment: Physical Review A (submitted
Development of a Management Algorithm for Post-operative Pain (MAPP) after total knee and total hip replacement: study rationale and design.
BACKGROUND: Evidence from clinical practice and the extant literature suggests that post-operative pain assessment and treatment is often suboptimal. Poor pain management is likely to persist until pain management practices become consistent with guidelines developed from the best available scientific evidence. This work will address the priority in healthcare of improving the quality of pain management by standardising evidence-based care processes through the incorporation of an algorithm derived from best evidence into clinical practice. In this paper, the methodology for the creation and implementation of such an algorithm that will focus, in the first instance, on patients who have undergone total hip or knee replacement is described. METHODS: In partnership with clinicians, and based on best available evidence, the aim of the Management Algorithm for Post-operative Pain (MAPP) project is to develop, implement, and evaluate an algorithm designed to support pain management decision-making for patients after orthopaedic surgery. The algorithm will provide guidance for the prescription and administration of multimodal analgesics in the post-operative period, and the treatment of breakthrough pain. The MAPP project is a multisite study with one coordinating hospital and two supporting (rollout) hospitals. The design of this project is a pre-implementation-post-implementation evaluation and will be conducted over three phases. The Promoting Action on Research Implementation in Health Services (PARiHS) framework will be used to guide implementation. Outcome measurements will be taken 10 weeks post-implementation of the MAPP. The primary outcomes are: proportion of patients prescribed multimodal analgesics in accordance with the MAPP; and proportion of patients with moderate to severe pain intensity at rest. These data will be compared to the pre-implementation analgesic prescribing practices and pain outcome measures. A secondary outcome, the efficacy of the MAPP, will be measured by comparing pain intensity scores of patients where the MAPP guidelines were or were not followed. DISCUSSION: The outcomes of this study have relevance for nursing and medical professionals as well as informing health service evaluation. In establishing a framework for the sustainable implementation and evaluation of a standardised approach to post-operative pain management, the findings have implications for clinicians and patients within multiple surgical contexts
Overexpression of the aphid-induced serine protease inhibitor <i>CI2c </i>gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid
<div><p>Aphids are serious pests in crop plants. In an effort to identify plant genes controlling resistance against aphids, we have here studied a protease inhibitor, CI2c in barley (<i>Hordeum vulgare</i> L.). The <i>CI2c</i> gene was earlier shown to be upregulated by herbivory of the bird cherry-oat aphid <i>(Rhopalosiphum padi</i> L.<i>)</i> in barley genotypes with moderate resistance against this aphid, but not in susceptible lines. We hypothesized that CI2c contributes to the resistance. To test this idea, cDNA encoding <i>CI2c</i> was overexpressed in barley and bioassays were carried out with <i>R</i>. <i>padi</i>. For comparison, tests were carried out with the green peach aphid (<i>Myzus persicae</i> Sulzer), for which barley is a poor host. The performance of <i>R</i>. <i>padi</i> was not different on the <i>CI2c</i>-overexpressing lines in comparison to controls in test monitoring behavior and fecundity. <i>M</i>. <i>persicae</i> preference was affected as shown in the choice test, this species moved away from control plants, but remained on the <i>CI2c</i>-overexpressing lines. <i>R</i>. <i>padi</i>-induced responses related to defense were repressed in the overexpressing lines as compared to in control plants or the moderately resistant genotypes. A putative susceptibility gene, coding for a β-1,3-glucanase was more strongly induced by aphids in one of the <i>CI2c</i>-overexpressing lines. The results indicate that the CI2c inhibitor in overexpressing lines affects aphid-induced responses by suppressing defense. This is of little consequence to the specialist <i>R</i>.<i>padi</i>, but causes lower non-host resistance towards the generalist <i>M</i>. <i>persicae</i> in barley.</p></div
Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development
Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification
Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma
BACKGROUND: Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. METHODOLOGY/PRINCIPAL FINDINGS: We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. CONCLUSIONS/SIGNIFICANCE: Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration
Optimising expression of the recombinant fusion protein biopesticide ω-hexatoxin-Hv1a/GNA in Pichia pastoris: sequence modifications and a simple method for the generation of multi-copy strains
p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish
p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium
A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling
Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen - Jasminum gilgianum, an Oleaceae species native to Papua New Guinea - induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME's mechanism of action will help determine this compound's pharmacological utility
- …
