408 research outputs found

    Involutivity of integrals for sine-Gordon, modified KdV and potential KdV maps

    Full text link
    Closed form expressions in terms of multi-sums of products have been given in \cite{Tranclosedform, KRQ} of integrals of sine-Gordon, modified Korteweg-de Vries and potential Korteweg-de Vries maps obtained as so-called (p,1)(p,-1)-traveling wave reductions of the corresponding partial difference equations. We prove the involutivity of these integrals with respect to recently found symplectic structures for those maps. The proof is based on explicit formulae for the Poisson brackets between multi-sums of products.Comment: 24 page

    Construction of Integrals of Higher-Order Mappings

    Full text link
    We find that certain higher-order mappings arise as reductions of the integrable discrete A-type KP (AKP) and B-type KP (BKP) equations. We find conservation laws for the AKP and BKP equations, then we use these conservation laws to derive integrals of the associated reduced maps.Comment: appear to Journal of the Physical Society of Japa

    On a two-parameter extension of the lattice KdV system associated with an elliptic curve

    Full text link
    A general structure is developed from which a system of integrable partial difference equations is derived generalising the lattice KdV equation. The construction is based on an infinite matrix scheme with as key ingredient a (formal) elliptic Cauchy kernel. The consistency and integrability of the lattice system is discussed as well as special solutions and associated continuum equations.Comment: Submitted to the proceedings of the Oeresund PDE-symposium, 23-25 May 2002; 17 pages LaTeX, style-file include

    Long-time behaviour of discretizations of the simple pendulum equation

    Full text link
    We compare the performance of several discretizations of the simple pendulum equation in a series of numerical experiments. The stress is put on the long-time behaviour. We choose for the comparison numerical schemes which preserve the qualitative features of solutions (like periodicity). All these schemes are either symplectic maps or integrable (preserving the energy integral) maps, or both. We describe and explain systematic errors (produced by any method) in numerical computations of the period and the amplitude of oscillations. We propose a new numerical scheme which is a modification of the discrete gradient method. This discretization preserves (almost exactly) the period of small oscillations for any time step.Comment: 41 pages, including 18 figures and 4 table

    Singularity, complexity, and quasi--integrability of rational mappings

    Get PDF
    We investigate global properties of the mappings entering the description of symmetries of integrable spin and vertex models, by exploiting their nature of birational transformations of projective spaces. We give an algorithmic analysis of the structure of invariants of such mappings. We discuss some characteristic conditions for their (quasi)--integrability, and in particular its links with their singularities (in the 2--plane). Finally, we describe some of their properties {\it qua\/} dynamical systems, making contact with Arnol'd's notion of complexity, and exemplify remarkable behaviours.Comment: Latex file. 17 pages. To appear in CM
    corecore