97,595 research outputs found

    Carrier extraction circuit

    Get PDF
    Feedback loop extracts demodulated reference signals from IF input and feeds signal back to demodulator. Since reference signal is extracted directly from carrier, no separate reference need be transmitted. Circuit obtains coherent carrier from balanced or unbalanced four-phase signal of varying characteristics

    Measurements of the free-bound and free-free continua of nitrogen, oxygen and air

    Get PDF
    Photometric measurement of radiation in high temperature ai

    Optical Dipole Trapping beyond Rotating Wave Approximation: The case of Large Detuning

    Full text link
    We show that the inclusion of counter-rotating terms, usually dropped in evaluations of interaction of an electric dipole of a two level atom with the electromagnetic field, leads to significant modifications of trapping potential in the case of large detuning. The results are shown to be in excellent numerical agreement with recent experimental findings, for the case of modes of Laguerre-Gauss spatial profile.Comment: 13 pages, 2 figure

    Chandra observations of the galaxy cluster Abell 1835

    Get PDF
    We present the analysis of 30 ksec of Chandra observations of the galaxy cluster Abell 1835. Overall, the X-ray image shows a relaxed morphology, although we detect substructure in in the inner 30 kpc radius. Spectral analysis shows a steep drop in the X-ray gas temperature from ~12 keV in the outer regions of the cluster to ~4 keV in the core. The Chandra data provide tight constraints on the gravitational potential of the cluster which can be parameterized by a Navarro, Frenk & White (1997) model. The X-ray data allow us to measure the X-ray gas mass fraction as a function of radius, leading to a determination of the cosmic matter density of \Omega_m=0.40+-0.09 h_50^-0.5. The projected mass within a radius of ~150 kpc implied by the presence of gravitationally lensed arcs in the cluster is in good agreement with the mass models preferred by the Chandra data. We find a radiative cooling time of the X-ray gas in the centre of Abell 1835 of about 3x10^8 yr. Cooling flow model fits to the Chandra spectrum and a deprojection analysis of the Chandra image both indicate the presence of a young cooling flow (~6x10^8 yr) with an integrated mass deposition rate of 230^+80_-50 M_o yr^-1 within a radius of 30 kpc. We discuss the implications of our results in the light of recent RGS observations of Abell 1835 with XMM-Newton.Comment: 15 pages, 15 figures, accepted by MNRA
    corecore