323 research outputs found

    Cavity-QED tests of representations of canonical commutation relations employed in field quantization

    Full text link
    Various aspects of dissipative and nondissipative decoherence of Rabi oscillations are discussed in the context of field quantization in alternative representations of CCR. Theory is confronted with experiment, and a possibility of more conclusive tests is analyzed.Comment: Discussion of dissipative and nondissipative decoherence is included. Theory is now consistent with the existing data and predictions for new experiments are more reliabl

    Creating massive entanglement of Bose condensed atoms

    Full text link
    We propose a direct, coherent coupling scheme that can create massively entangled states of Bose-Einstein condensed atoms. Our idea is based on an effective interaction between two atoms from coherent Raman processes through a (two atom) molecular intermediate state. We compare our scheme with other recent proposals for generation of massive entanglement of Bose condensed atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure

    Five Lectures On Dissipative Master Equations

    Full text link
    1 First Lecture: Basics 1.1 Physical Derivation of the Master Equation 1.2 Some Simple Implications 1.3 Steady State 1.4 Action to the Left 2 Second Lecture: Eigenvalues and Eigenvectors of L 2.1 A Simple Case First 2.2 The General Case 3 Third Lecture: Completeness of the Damping Bases 3.1 Phase Space Functions 3.2 Completeness of the Eigenvectors of L 3.3 Positivity Conservation 3.4 Lindblad Form of Liouville Operators 4 Fourth Lecture: Quantum-Optical Applications 4.1 Periodically Driven Damped Oscillator 4.2 Conditional and Unconditional Evolution 4.3 Physical Signicance of Statistical Operators 5 Fifth Lecture: Statistics of Detected Atoms 5.1 Correlation Functions 5.2 Waiting Time Statistics 5.3 Counting StatisticsComment: 58 pages, 10 figures; book chapter to appear in ``Coherent Evolution in Noisy Environments'', Lecture Notes in Physics, (Springer Verlag, Berlin-Heidelberg-New York). Notes of lectures given in Dresden,23-27 April 200

    Quantum state reconstruction using atom optics

    Get PDF
    We present a novel technique in which the total internal quantum state of an atom may be reconstructed via the measurement of the momentum transferred to an atom following its interaction with a near resonant travelling wave laser beam. We present the first such measurement and demonstrate the feasibility of the technique

    Robust Entanglement in Atomic Systems via Lambda-Type Processes

    Get PDF
    It is shown that the system of two three-level atoms in Λ\Lambda configuration in a cavity can evolve to a long-lived maximum entangled state if the Stokes photons vanish from the cavity by means of either leakage or damping. The difference in evolution picture corresponding to the general model and effective model with two-photon process in two-level system is discussed.Comment: 10 pages, 3 figure

    Single Atom and Two Atom Ramsey Interferometry with Quantized Fields

    Get PDF
    Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case we show how two atom (like two photon) interferometry can be used to discern a variety of interference effects as the two independent Ramsey zones get entangled by the passage of first atom. Generation of various entangled states like |0,2>+|2,0> are discussed and in far off resonance case generation of entangled state of two coherent states is discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.

    Generating and probing a two-photon Fock state with a single atom in a cavity

    Get PDF
    A two-photon Fock state is prepared in a cavity sustaining a "source mode " and a "target mode", with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field on the same atom. Extensions to other multi-photon processes and to a new type of micromaser are briefly discussed

    Squeezing arbitrary cavity-field states through their interaction with a single driven atom

    Full text link
    We propose an implementation of the parametric amplification of an arbitrary radiation-field state previously prepared in a high-Q cavity. This nonlinear process is accomplished through the dispersive interactions of a single three-level atom (fundamental |g>, intermediate |i>, and excited |e> levels) simultaneously with i) a classical driving field and ii) a previously prepared cavity mode whose state we wish to squeeze. We show that, in the adiabatic approximantion, the preparation of the initial atomic state in the intermediate level |i> becomes crucial for obtaing the degenerated parametric amplification process.Comment: Final published versio

    Rotational master equation for cold laser-driven molecules

    Full text link
    The equations of motion for the molecular rotation are derived for vibrationally cold dimers that are polarized by off-resonant laser light. It is shown that, by eliminating electronic and vibrational degrees of freedom, a quantum master equation for the reduced rotational density operator can be obtained. The coherent rotational dynamics is caused by stimulated Raman transitions, whereas spontaneous Raman transitions lead to decoherence in the motion of the quantized angular momentum. As an example the molecular dynamics for the optical Kerr effect is chosen, revealing decoherence and heating of the molecular rotation.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
    corecore