111 research outputs found
Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: Theory
We propose a model for magnetic noise based on spin-flips (not
electron-trapping) of paramagnetic dangling-bonds at the
amorphous-semiconductor/oxide interface. A wide distribution of spin-flip times
is derived from the single-phonon cross-relaxation mechanism for a
dangling-bond interacting with the tunneling two-level systems of the amorphous
interface. The temperature and frequency dependence is sensitive to three
energy scales: The dangling-bond spin Zeeman energy delta, as well as the
minimum (E_min) and maximum (E_max) values for the energy splittings of the
tunneling two-level systems. We compare and fit our model parameters to a
recent experiment probing spin coherence of antimony donors implanted in
nuclear-spin-free silicon [T. Schenkel {\it et al.}, Appl. Phys. Lett. 88,
112101 (2006)], and conclude that a dangling-bond area density of the order of
10^{14}cm^{-2} is consistent with the data. This enables the prediction of
single spin qubit coherence times as a function of the distance from the
interface and the dangling-bond area density in a real device structure. We
apply our theory to calculations of magnetic flux noise affecting SQUID devices
due to their Si/SiO_2 substrate. Our explicit estimates of flux noise in SQUIDs
lead to a noise spectral density of the order of 10^{-12}Phi_{0}^{2} {Hz}^{-1}
at f=1Hz. This value might explain the origin of flux noise in some SQUID
devices. Finally, we consider the suppression of these effects using surface
passivation with hydrogen, and the residual nuclear-spin noise resulting from a
perfect silicon-hydride surface.Comment: Final published versio
Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei
We review and summarize recent theoretical and experimental work on electron
spin dynamics in quantum dots and related nanostructures due to hyperfine
interaction with surrounding nuclear spins. This topic is of particular
interest with respect to several proposals for quantum information processing
in solid state systems. Specifically, we investigate the hyperfine interaction
of an electron spin confined in a quantum dot in an s-type conduction band with
the nuclear spins in the dot. This interaction is proportional to the square
modulus of the electron wave function at the location of each nucleus leading
to an inhomogeneous coupling, i.e. nuclei in different locations are coupled
with different strength. In the case of an initially fully polarized nuclear
spin system an exact analytical solution for the spin dynamics can be found.
For not completely polarized nuclei, approximation-free results can only be
obtained numerically in sufficiently small systems. We compare these exact
results with findings from several approximation strategies.Comment: 26 pages, 9 figures. Topical Review to appear in J. Phys.: Condens.
Matte
Electron Spin-Relaxation Times of Phosphorus Donors in Silicon
Pulsed electron paramagnetic resonance measurements of donor electron spins
in natural phosphorus-doped silicon (Si:P) and isotopically-purified 28Si:P
show a strongly temperature-dependent longitudinal relaxation time, T1, due to
an Orbach process with DeltaE = 126 K. The 2-pulse echo decay is exponential in
28Si:P, with the transverse relaxation (decoherence) time, T2, controlled by
the Orbach process above ~12 K and by instantaneous diffusion at lower
temperatures. Spin echo experiments with varying pulse turning angles show that
the intrinsic T2 of an isolated spin in 28Si:P is ~60 ms at 7 K.Comment: Submitted to PRL on 02.28.200
Overcoming artificial broadening in Gd³⁺–Gd³⁺ distance distributions arising from dipolar pseudo-secular terms in DEER experiments
By providing accurate distance measurements between spin labels site-specifically attached to bio-macromolecules, double electron–electron resonance (DEER) spectroscopy provides a unique tool to probe the structural and conformational changes in these molecules. Gd3+-tags present an important family of spin-labels for such purposes, as they feature high chemical stability and high sensitivity in high-field DEER measurements. The high sensitivity of the Gd3+ ion is associated with its high spin (S = 7/2) and small zero field splitting (ZFS), resulting in a narrow spectral width of its central transition at high fields. However, under the conditions of short distances and exceptionally small ZFS, the weak coupling approximation, which is essential for straightforward DEER data analysis, becomes invalid and the pseudo-secular terms of the dipolar Hamiltonian can no longer be ignored. This work further explores the effects of pseudo-secular terms on Gd3+–Gd3+ DEER measurements using a specifically designed ruler molecule; a rigid bis-Gd3+-DOTA model compound with an expected Gd3+–Gd3+ distance of 2.35 nm and a very narrow central transition at the W-band (95 GHz). We show that the DEER dipolar modulations are damped under the standard W-band DEER measurement conditions with a frequency separation, Δν, of 100 MHz between the pump and observe pulses. Consequently, the DEER spectrum deviates considerably from the expected Pake pattern. We show that the Pake pattern and the associated dipolar modulations can be restored with the aid of a dual mode cavity by increasing Δν from 100 MHz to 1.09 GHz, allowing for a straightforward measurement of a Gd3+–Gd3+ distance of 2.35 nm. The increase in Δν increases the contribution of the |−5/2〉 → |−3/2〉 and |−7/2〉 → |−5/2〉 transitions to the signal at the expense of the |−3/2 〉 → |−1/2〉 transition, thus minimizing the effect of dipolar pseudo-secular terms and restoring the validity of the weak coupling approximation. We apply this approach to the A93C/N140C mutant of T4 lysozyme labeled with two different Gd3+ tags that have narrow central transitions and show that even for a distance of 4 nm there is still a significant (about two-fold) broadening that is removed by increasing Δν to 636 MHz and 898 MHz.This research was supported by the Israeli Science Foundation (grant
334/14) and made possible in part by the historic generosity of the
Harold Perlman Family. D. G. holds the Erich Klieger professorial
chair in Chemical Physic
“2+1” Pulse Sequence as Apllied for Distance and Spatial Distribution Measurements of Paramagnetic Centers
Electron spin echo technique for spatial radical distribution investigation in irradiated solid substances: Influence of let and spur effects
Electron Spin Echo Studies of the Spatial Distribution of Radical-Paramagnetic Ion Pairs
Determination of the g-Tensors and Their Orientations for cis,trans-(L-N<sub>2</sub>S<sub>2</sub>)Mo<sup>V</sup>OX (X = Cl, SCH<sub>2</sub>Ph) by Single-Crystal EPR Spectroscopy and Molecular Orbital Calculations
A single-crystal study of cis,trans-(L-N2S2)MoVOCl (1) doped into cis,trans-(N2S2)MoVIO2 (3) has enabled the g-tensor of 1 and its orientation with respect to the molecular structure to be determined. The EPR parameters (g1, 2.004; g2, 1.960; g3, 1.946; A1, 71.7 × 10-4 cm-1; A2, 11.7 × 10-4 cm-1; A3, 32.0 × 10-4 cm-1) of cis,trans-(L-N2S2)MoVOCl [L-N2S2H2 = N,N‘-dimethyl-N,N‘-bis(mercaptophenyl)ethylenediamine] mimic those of the low-pH form of sulfite oxidase and the “very rapid” species of xanthine oxidase. The principal axis that corresponds to g1 is rotated ∼10° from the Mo⋮O vector, while the principal axis that corresponds to g3 is located in the equatorial plane and ∼38° from the Mo−Cl vector. Independent theoretical calculations of the g-tensor of 1 were performed using two types of techniques: (1) the spectroscopically parametrized intermediate neglect of differential overlap technique (INDO/S) combined with single-excitation configuration interaction (CIS); (2) a scalar relativistic DFT (BP86 and B3LYP functionals) treatment using the zeroth order regular approximation to relativistic effects (ZORA) in combination with recently developed accurate multicenter mean field spin−orbit operators (RI-SOMF) and the estimation of solvent effects using dielectric continuum theory at the conductor-like screening model (COSMO) level. The excellent agreement between experiment and theory, as well as the high consistency between the INDO/S and BP86/ZORA results, provides a sound basis for analysis of the calculated orientation of the g-tensor for cis,trans-(L-N2S2)MoVO(SCH2Ph) (2), for which single-crystal EPR data are not available but which contains three equatorial sulfur donor atoms, as occurs in sulfite oxidase and xanthine oxidase. The implications of these results for the EPR spectra of the Mo(V) centers of enzymes are discussed
- …
