1,265 research outputs found
Ionization fronts in negative corona discharges
In this paper we use a hydrodynamic minimal streamer model to study negative
corona discharge. By reformulating the model in terms of a quantity called
shielding factor, we deduce laws for the evolution in time of both the radius
and the intensity of ionization fronts. We also compute the evolution of the
front thickness under the conditions for which it diffuses due to the geometry
of the problem and show its self-similar character.Comment: 4 pages, 4 figure
High pressure operation of the triple-GEM detector in pure Ne, Ar and Xe
We study the performance of the triple-GEM (Gas Electron Multiplier) detector
in pure noble gases Ne, Ar and Xe, at different pressures varying from 1 to 10
atm. In Ar and Xe, the maximum attainable gain of the detector abruptly drops
down for pressures exceeding 3 atm. In contrast, the maximum gain in Ne was
found to increase with pressure, reaching a value of 100,000 at 7 atm. The
results obtained are of particular interest for developing noble gas-based
cryogenic particle detectors for solar neutrino and dark matter search.Comment: 7 pages, 4 figures. Submitted to Nucl. Instr. and Meth. A as a letter
to the Edito
A Self-Similar Solution for the Propagation of a Relativistic Shock in an Exponential Atmosphere
We derive a fully relativistic, self-similar solution to describe the
propagation of a shock along an exponentially decreasing atmosphere, in the
limit of very large Lorentz factor. We solve the problem in planar symmetry and
compute the acceleration of the shock in terms of the density gradient crossed
during its evolution. We apply our solution to the acceleration of shocks
within the atmosphere of a HyperNova, and show that velocities consistent with
the requirements of GRB models can be achieved with exponential atmospheres
spanning a wide density range.Comment: ApJL in pres
The onset of tree-like patterns in negative streamers
We present the first analytical and numerical studies of the initial stage of
the branching process based on an interface dynamics streamer model in the
fully 3-D case. This model follows from fundamental considerations on charge
production by impact ionization and balance laws, and leads to an equation for
the evolution of the interface between ionized and non-ionized regions. We
compare some experimental patterns with the numerically simulated ones, and
give an explicit expression for the growth rate of harmonic modes associated
with the perturbation of a symmetrically expanding discharge. By means of full
numerical simulation, the splitting and formation of characteristic tree-like
patterns of electric discharges is observed and described
General Relativistic effects on the conversion of nuclear to two-flavour quark matter in compact stars
We investigate the General Relativistic (GR) effects on the conversion from
nuclear to two-flavour quark matter in compact stars, both static as well as
rotating. We find that GR effects lead to qualitative differences in rotating
stars, indicating the inadequacy of non-relativistic (NR) or even Special
Relativistic (SR) treatments for these cases.Comment: 4 pages, 4 figure
Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration
A novel nonlinear effect of anomalously deep penetration of an external radio
frequency electric field into a plasma is discribed. A self-consistent kinetic
treatment reveals a transition region between the sheath and the plasma.
Because of the electron velocity modulation in the sheath, bunches in the
energetic electron density are formed in the transition region adjusted to the
sheath. The width of the region is of order , where V_{T} is the
electron thermal velocity, and is frequency of the electric field. The
presence of the electric field in the transition region results in a cooling of
the energetic electrons and an additional heating of the cold electrons in
comparison with the case when the transition region is neglected.Comment: 14,4 figure
Giant magnetoresistance in semiconductor / granular film heterostructures with cobalt nanoparticles
We have studied the electron transport in SiO(Co)/GaAs and
SiO(Co)/Si heterostructures, where the SiO(Co) structure is the
granular SiO film with Co nanoparticles. In SiO(Co)/GaAs
heterostructures giant magnetoresistance effect is observed. The effect has
positive values, is expressed, when electrons are injected from the granular
film into the GaAs semiconductor, and has the temperature-peak type character.
The temperature location of the effect depends on the Co concentration and can
be shifted by the applied electrical field. For the SiO(Co)/GaAs
heterostructure with 71 at.% Co the magnetoresistance reaches 1000 ( %)
at room temperature. On the contrary, for SiO(Co)/Si heterostructures
magnetoresistance values are very small (4%) and for SiO(Co) films the
magnetoresistance has an opposite value. High values of the magnetoresistance
effect in SiO(Co)/GaAs heterostructures have been explained by
magnetic-field-controlled process of impact ionization in the vicinity of the
spin-dependent potential barrier formed in the semiconductor near the
interface. Kinetic energy of electrons, which pass through the barrier and
trigger the avalanche process, is reduced by the applied magnetic field. This
electron energy suppression postpones the onset of the impact ionization to
higher electric fields and results in the giant magnetoresistance. The
spin-dependent potential barrier is due to the exchange interaction between
electrons in the accumulation electron layer in the semiconductor and
-electrons of Co.Comment: 25 pages, 16 figure
Relativistic Model of Detonation Transition from Neutron to Strange Matter
We study the conversion of neutron matter into strange matter as a detonation
wave. The detonation is assumed to originate from a central region in a
spherically symmetric background of neutrons with a varying radial density
distribution. We present self-similar solutions for the propagation of
detonation in static and collapsing backgrounds of neutron matter. The
solutions are obtained in the framework of general relativistic hydrodynamics,
and are relevant for the possible transition of neutron into strange stars.
Conditions for the formation of either bare or crusted strange stars are
discussed.Comment: 16 pages, 4 figures. Submitted to IJMP
Spontaneous Branching of Anode-Directed Streamers between Planar Electrodes
Non-ionized media subject to strong fields can become locally ionized by
penetration of finger-shaped streamers. We study negative streamers between
planar electrodes in a simple deterministic continuum approximation. We observe
that for sufficiently large fields, the streamer tip can split. This happens
close to Firsov's limit of `ideal conductivity'. Qualitatively the tip
splitting is due to a Laplacian instability quite like in viscous fingering.
For future quantitative analytical progress, our stability analysis of planar
fronts identifies the screening length as a regularization mechanism.Comment: 4 pages, 6 figures, submitted to PRL on Nov. 16, 2001, revised
version of March 10, 200
Power laws and self-similar behavior in negative ionization fronts
We study anode-directed ionization fronts in curved geometries. When the
magnetic effects can be neglected, an electric shielding factor determines the
behavior of the electric field and the charged particle densities. From a
minimal streamer model, a Burgers type equation which governs the dynamics of
the electric shielding factor is obtained. A Lagrangian formulation is then
derived to analyze the ionization fronts. Power laws for the velocity and the
amplitude of streamer fronts are observed numerically and calculated
analytically by using the shielding factor formulation. The phenomenon of
geometrical diffusion is explained and clarified, and a universal self-similar
asymptotic behavior is derived.Comment: 25 pages, 9 figure
- …
