448 research outputs found
Linear and Nonlinear Optical Properties of Mn doped Benzimidazole Thin Films
In the present work, the Mn doped benzimidazole (BMZ) thin films were
prepared by simple chemical bath deposition technique. The material was
directly deposited as thin film on glass substrates and the metal concentration
in the solution was varied in weight percentage in order to investigate the
dopant effect on the properties of thin films. Similarly, the Mn doped BMZ
films were deposited in different solution temperature to study the effect of
deposition temperature on the properties of thin films. The PXRD and FT-IR
spectroscopy are used to study the structural and the presence of functional
groups in the BMZ medium. Depending upon the solution temperature, thickness of
the films varying from 0.6 to 1.2 {\mu}m and the optical transparency of the
samples increases with the increasing temperature up to 50 {\deg}C. Second
Harmonic Generation (SHG) efficiency of the films is measured for all the
films. Third order nonlinear optical properties of the films were analyzed
using Z-scan technique. The experimental results show that Mn doped BMZ films
exhibits saturation absorption and negative nonlinearity.Comment: This has been presented in DAE 58th Solid State Symposium held at
Thapar University, Patiala, Punjab, India. Will be published in AIP
conference proceedings soo
Effect of Electron Energy Distribution Function on Power Deposition and Plasma Density in an Inductively Coupled Discharge at Very Low Pressures
A self-consistent 1-D model was developed to study the effect of the electron
energy distribution function (EEDF) on power deposition and plasma density
profiles in a planar inductively coupled plasma (ICP) in the non-local regime
(pressure < 10 mTorr). The model consisted of three modules: (1) an electron
energy distribution function (EEDF) module to compute the non-Maxwellian EEDF,
(2) a non-local electron kinetics module to predict the non-local electron
conductivity, RF current, electric field and power deposition profiles in the
non-uniform plasma, and (3) a heavy species transport module to solve for the
ion density and velocity profiles as well as the metastable density. Results
using the non-Maxwellian EEDF model were compared with predictions using a
Maxwellian EEDF, under otherwise identical conditions. The RF electric field,
current, and power deposition profiles were different, especially at 1mTorr,
for which the electron effective mean free path was larger than the skin depth.
The plasma density predicted by the Maxwellian EEDF was up to 93% larger for
the conditions examined. Thus, the non-Maxwellian EEDF must be accounted for in
modeling ICPs at very low pressures.Comment: 19 pages submitted to Plasma Sources Sci. Techno
Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Cell Biology 213 (2016): 23-32, doi: 10.1083/jcb.201512029.Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape.This work was supported by grants from the National Science Foundation (MCB-507511 to A.S. Gladfelter) and the National Institutes of Health (NIGMS-T32GM008704 to A.A. Bridges)
The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFy) is Carried on Extracellular Membrane Vesicles to Host Cells
In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 mu g/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 -10 ng per mu g of total MV protein, a concentration that accounts for the cellular responses see
Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7
Biofilms in the industrial environment could be problematic. Encased in extracellular polymeric substances, pathogens within biofilms are significantly more resistant to chlorine and other disinfectants. Recent studies suggest that compounds capable of manipulating nitric oxide-mediated signaling in bacteria could induce dispersal of sessile bacteria and provide a foundation for novel approaches to controlling biofilms formed by some microorganisms. In this work, we compared the ability of five nitric oxide donors (molsidomine, MAHMA NONOate, diethylamine NONOate, diethylamine NONOate diethylammonium salt, spermine NONOate) to dislodge biofilms formed by non-typhoidal Salmonella enterica and pathogenic E. coli on plastic and stainless steel surfaces at different temperatures. All five nitric oxide donors induced significant (35-80%) dispersal of biofilms, however, the degree of dispersal and the optimal dispersal conditions varied. MAHMA NONOate and molsidomine were strong dispersants of the Salmonella biofilms formed on polystyrene. Importantly, molsidomine induced dispersal of up to 50% of the pre-formed Salmonella biofilm at 4 degrees C, suggesting that it could be effective even under refrigerated conditions. Biofilms formed by E. coli O157:H7 were also significantly dispersed. Nitric oxide donor molecules were highly active within 6 hours of application. To better understand mode of action of these compounds, we identified Salmonella genomic region recA-hydN, deletion of which led to an insensitivity to the nitric oxide donors
3-(1H-Benzimidazol-2-yl)-2-chloro-8-methylquinoline
Two independent molecules of the title compound, C17H12ClN3, are present in the structure. The angle between the planes defined by the atoms of the benzimidazole unit and the quinoline unit are 45.2 (3) and 44.0 (3)°, indicating an essentially identical conformation for both molecules. Each of the independent molecules is linked with a symmetry equivalent by an intermolecular N—H⋯N hydrogen bond involving the two benzimidazole N atoms, to form chains in the crystallographic c direction
2-{2-[3-(1H-Benzimidazol-2-yl)quinolin-2-yloxy]ethoxy}ethanol
In the title compound, C20H19N3O3, the interplanar angle between the benzimidazole unit and the quinoline unit is 25.1 (2)°. Two different hydrogen bonds involving the hydroxy group and the imidazole unit are present. An intramolecular N—H⋯O hydrogen bond links the hydroxy group of the side chain with the imidazole unit, forming a 12-membered ring, and an intermolecular O—H⋯N hydrogen bond links the molecules, forming chains in the crystallographic b direction
- …
