215 research outputs found

    The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering

    Get PDF
    DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.Fil: Iglesias, Francisco Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Bruera, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Dergan Dylon, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Marino, Cristina Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Lorenzi, Hernán. J. Craig Venter Institute; Estados UnidosFil: Mateos, Julieta Lisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Turck, Franziska. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Coupland, George. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Departamento de Ciencias Exactas; Argentin

    Thyroid Function in Pregnant Women With Moderate to Severe Alcohol Consumption Is Related to Infant Developmental Outcomes.

    Get PDF
    INTRODUCTION: Fetal alcohol spectrum disorders (FASD) have an estimated global prevalence of 2-5% of births, but prevalence is reported to be as high as 15.5% for FASD in certain high-risk communities in South Africa. Preclinical studies demonstrate that alcohol consumption during pregnancy interferes with thyroid hormone availability and function and negatively impacts exposed offspring. Very little is currently reported on this phenomenon in humans. METHODS: This pilot study was embedded in the Drakenstein Child Health Study, a multi-disciplinary longitudinal birth cohort study investigating the early biological and psychosocial determinants of child health in South Africa. Twenty one mothers and their children with moderate-severe prenatal alcohol exposure (PAE) and 19 mothers and their children with no alcohol exposure were investigated. Maternal exposure history and blood samples were collected in mid-pregnancy and analyzed for serum-free thyroxin (FT4), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH). Children were assessed with formally measured growth parameters and development was evaluated using the Bayley III Scales of Infant and Toddler Development (BSID III) at 6 and 24?months of age. RESULTS: While there were no significant differences in serum TSH and FT4 between groups, FT3 levels were significantly higher in mothers with moderate-severe prenatal alcohol use. In abstinent pregnant women, levels of FT4 were significantly correlated with infants' scores on cognitive measures at 6 and 24?months of age and with levels of gross motor skills at 24?months. However, in mothers with alcohol use, FT4 levels were not correlated with any cognitive or motor skills, but FT3 levels were significantly associated with scores on children's social-emotional development at 24?months of age. DISCUSSION: Thyroid function in PAE is sufficiently disrupted to lead to alterations in serum FT3 levels. The contrast in findings between PAE and abstinent dyads in their association of maternal thyroid function and infant development further suggests that such disruption is present and may contribute to adverse neurodevelopment. Further work is needed to determine the relationship between peripheral thyroid indices during pregnancy and neurodevelopmental outcomes in the context of PAE

    Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models

    Get PDF
    The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar–Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents

    RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis

    Get PDF
    Although our understanding of mechanisms of DNA repair in bacteria and eukaryotic nuclei continues to improve, almost nothing is known about the DNA repair process in plant organelles, especially chloroplasts. Since the RecA protein functions in DNA repair for bacteria, an analogous function may exist for chloroplasts. The effects on chloroplast DNA (cpDNA) structure of two nuclear-encoded, chloroplast-targeted homologues of RecA in Arabidopsis were examined. A homozygous T-DNA insertion mutation in one of these genes (cpRecA) resulted in altered structural forms of cpDNA molecules and a reduced amount of cpDNA, while a similar mutation in the other gene (DRT100) had no effect. Double mutants exhibited a similar phenotype to cprecA single mutants. The cprecA mutants also exhibited an increased amount of single-stranded cpDNA, consistent with impaired RecA function. After four generations, the cprecA mutant plants showed signs of reduced chloroplast function: variegation and necrosis. Double-stranded breaks in cpDNA of wild-type plants caused by ciprofloxacin (an inhibitor of Escherichia coli gyrase, a type II topoisomerase) led to an alteration of cpDNA structure that was similar to that seen in cprecA mutants. It is concluded that the process by which damaged DNA is repaired in bacteria has been retained in their endosymbiotic descendent, the chloroplast

    Identification of Inhibitors against Mycobacterium tuberculosis Thiamin Phosphate Synthase, an Important Target for the Development of Anti-TB Drugs

    Get PDF
    Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6–9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M.tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M.tuberculosis. In this study, a comparative homology model of M.tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC50 values ranging from 20 – 100 µg/ml and two of these exhibited weak inhibition of M.tuberculosis growth with MIC99 values being 125 µg/ml and 162.5 µg/ml while one compound was identified as a very potent inhibitor of M.tuberculosis growth with an MIC99 value of 6 µg/ml. This study establishes MtTPS as a novel drug target against M.tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis

    Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus

    Get PDF
    Floral transition in the obligate long-day (LD) plant sugar beet (Beta vulgaris ssp. vulgaris) is tightly linked to the B gene, a dominant early-bolting quantitative trait locus, the expression of which is positively regulated by LD photoperiod. Thus, photoperiod regulators like CONSTANS (CO) and CONSTANS-LIKE (COL) genes identified in many LD and short-day (SD)-responsive plants have long been considered constituents and/or candidates for the B gene. Until now, the photoperiod response pathway of sugar beet (a Caryophyllid), diverged from the Rosids and Asterids has not been identified. Here, evidence supporting the existence of a COL gene family is provided and the presence of Group I, II, and III COL genes in sugar beet, as characterized by different zinc-finger (B-box) and CCT (CO, CO-like, TOC) domains is demonstrated. BvCOL1 is identified as a close-homologue of Group 1a (AtCO, AtCOL1, AtCOL2) COL genes, hence a good candidate for flowering time control and it is shown that it maps to chromosome II but distant from the B gene locus. The late-flowering phenotype of A. thaliana co-2 mutants was rescued by over-expression of BvCOL1 thereby suggesting functional equivalence with AtCO, and it is shown that BvCOL1 interacts appropriately with the endogenous downstream genes, AtFT and AtSOC1 in the transgenic plants. Curiously, BvCOL1 has a dawn-phased diurnal pattern of transcription, mimicking that of AtCOL1 and AtCOL2 while contrasting with AtCO. Taken together, these data suggest that BvCOL1 plays an important role in the photoperiod response of sugar beet.Peer reviewe

    Thyroxine Administration Prevents Streptococcal Cell Wall-Induced Inflammatory Responses*

    Full text link
    AbstractAdministration of streptococcal cell wall (SCW) preparation induces an inflammatory response in susceptible animals that is a model frequently used for rheumatoid arthritis. The degree of inflammation produced by SCW is greatly enhanced by low endogenous levels of glucocorticoids due to diminished hypothalamic-pituitary-adrenal activity. Because decreased glucocorticoid production is known to occur in the hypothyroid state, we tested whether hypothyroidism would increase, and conversely, whether hyperthyroidism would decrease, the inflammatory responses to SCW. Adult female Sprague Dawley rats were fed a regular diet (control), L-T4 (T4; hyperthyroid), or 6-propyl-thiouracil (hypothyroid) in drinking water for 7 weeks. Hypothyroidism resulted in elevated plasma levels of TSH and hypothalamic preproTRH messenger RNA (mRNA) while reducing anterior pituitary POMC mRNA and plasma ACTH and corticosterone levels. In contrast, hyperthyroid rats produced opposite results: decreased measures of central thyroid function but increased pituitary-adrenal function. Three days after administration of SCW, macrophage inflammatory protein-1α and interleukin-1β mRNA expression increased dramatically in controls and even further in hypothyroid animals, as measured by Northern blot analysis. In contrast, T4-treated rats showed significant inhibition of these inflammatory markers. Thus, the hyperthyroid state combined with increased endogenous glucocorticoid levels is protective against inflammatory challenges. The inverse relationship between preproTRH expression and pituitary-adrenal function suggests the possibility of a direct inhibitory link connecting the hypothalamic-pituitary-adrenal and thyroid axes, and suggests alternative sites of therapeutic intervention for rheumatoid arthritis and other inflammatory associated disorders.</jats:p
    corecore