6,262 research outputs found
Parallel Batch-Dynamic Graph Connectivity
In this paper, we study batch parallel algorithms for the dynamic
connectivity problem, a fundamental problem that has received considerable
attention in the sequential setting. The most well known sequential algorithm
for dynamic connectivity is the elegant level-set algorithm of Holm, de
Lichtenberg and Thorup (HDT), which achieves amortized time per
edge insertion or deletion, and time per query. We
design a parallel batch-dynamic connectivity algorithm that is work-efficient
with respect to the HDT algorithm for small batch sizes, and is asymptotically
faster when the average batch size is sufficiently large. Given a sequence of
batched updates, where is the average batch size of all deletions, our
algorithm achieves expected amortized work per
edge insertion and deletion and depth w.h.p. Our algorithm
answers a batch of connectivity queries in expected
work and depth w.h.p. To the best of our knowledge, our algorithm
is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 201
Quark-Hadron Phase Transitions in Viscous Early Universe
Based on hot big bang theory, the cosmological matter is conjectured to
undergo QCD phase transition(s) to hadrons, when the universe was about s old. In the present work, we study the quark-hadron phase transition, by
taking into account the effect of the bulk viscosity. We analyze the evolution
of the quantities relevant for the physical description of the early universe,
namely, the energy density , temperature , Hubble parameter and
scale factor before, during and after the phase transition. To study the
cosmological dynamics and the time evolution we use both analytical and
numerical methods. By assuming that the phase transition may be described by an
effective nucleation theory (prompt {\it first-order} phase transition), we
also consider the case where the universe evolved through a mixed phase with a
small initial supercooling and monotonically growing hadronic bubbles. The
numerical estimation of the cosmological parameters, and for instance,
makes it clear that the time evolution varies from phase to phase. As the QCD
era turns to be fairly accessible in the high-energy experiments and the
lattice QCD simulations, the QCD equation of state is very well defined. In
light of this, we introduce a systematic study of the {\it cross-over}
quark-hadron phase transition and an estimation for the time evolution of
Hubble parameter.Comment: 27 pages, 17 figures, revtex style (To appear in Phys. Rev. D). arXiv
admin note: text overlap with arXiv:gr-qc/040404
Distribution of occupation numbers in finite Fermi-systems and role of interaction in chaos and thermalization
New method is developed for calculation of single-particle occupation numbers
in finite Fermi systems of interacting particles. It is more accurate than the
canonical distribution method and gives the Fermi-Dirac distribution in the
limit of large number of particles. It is shown that statistical effects of the
interaction are absorbed by an increase of the effective temperature. Criteria
for quantum chaos and statistical equilibrium are considered. All results are
confirmed by numerical experiments in the two-body random interaction model.Comment: 4 pages, Latex, 4 figures in the form of PS-file
BLITZEN: A highly integrated massively parallel machine
The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting
Generalized Kinetic Theory of Electrons and Phonons: Models, Equilibrium, Stability
In the present paper our aim is to introduce some models for the
generalization of the kinetic theory of electrons and phonons (KTEP), as well
as to study equilibrium solutions and their stability for the generalized KTEP
(GKTEP) equations. We consider a couple of models, relevant to non standard
quantum statistics, which give rise to inverse power law decays of the
distribution function with respect to energy. In the case of electrons in a
phonon background, equilibrium and stability are investigated by means of
Lyapounov theory. Connections with thermodynamics are pointed out.Comment: 10 pages, 2 figures, (RevTeX4), to appear in Physica B (2003
Reciprocity relations between ordinary temperature and the Frieden-Soffer's Fisher-temperature
Frieden and Soffer conjectured some years ago the existence of a ``Fisher
temperature" T_F that would play, with regards to Fisher's information measure
I, the same role that the ordinary temperature T plays vis-a-vis Shannon's
logarithmic measure. Here we exhibit the existence of reciprocity relations
between T_F and T and provide an interpretation with reference to the meaning
of T_F for the canonical ensemble.Comment: 3 pages, no figure
Radial Spin Helix in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling
We suggest a long-lived spin polarization structure, a radial spin helix, and
study its relaxation dynamics. For this purpose, starting with a simple and
physically clear consideration of spin transport, we derive a system of
equations for spin polarization density and find its general solution in the
axially symmetric case. It is demonstrated that the radial spin helix of a
certain period relaxes slower than homogeneous spin polarization and plain spin
helix. Importantly, the spin polarization at the center of the radial spin
helix stays almost unchanged at short times. At longer times, when the initial
non-exponential relaxation region ends, the relaxation of the radial spin helix
occurs with the same time constant as that describing the relaxation of the
plain spin helix.Comment: 9 pages, 7 figure
Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter
We investigate the possibility and consequences of phase transitions from an
equation of state (EOS) describing nucleons and hyperons interacting via mean
fields of sigma, omega, and rho mesons in the recently improved quark-meson
coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag.
The transition to a mixed phase of baryons and deconfined quarks, and
subsequently to a pure deconfined quark phase, is described using the method of
Glendenning. The overall EOS for the three phases is calculated for various
scenarios and used to calculate stellar solutions using the
Tolman-Oppenheimer-Volkoff equations. The results are compared with recent
experimental data, and the validity of each case is discussed with consequences
for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte
Carboplatin/taxane-induced gastrointestinal toxicity: a pharmacogenomics study on the SCOTROC1 trial
Carboplatin/taxane combination is first-line therapy for ovarian cancer. However, patients can encounter treatment delays, impaired quality of life, even death because of chemotherapy-induced gastrointestinal (GI) toxicity. A candidate gene study was conducted to assess potential association of genetic variants with GI toxicity in 808 patients who received carboplatin/taxane in the Scottish Randomized Trial in Ovarian Cancer 1 (SCOTROC1). Patients were randomized into discovery and validation cohorts consisting of 404 patients each. Clinical covariates and genetic variants associated with grade III/IV GI toxicity in discovery cohort were evaluated in replication cohort. Chemotherapy-induced GI toxicity was significantly associated with seven single-nucleotide polymorphisms in the ATP7B, GSR, VEGFA and SCN10A genes. Patients with risk genotypes were at 1.53 to 18.01 higher odds to develop carboplatin/taxane-induced GI toxicity (P<0.01). Variants in the VEGF gene were marginally associated with survival time. Our data provide potential targets for modulation/inhibition of GI toxicity in ovarian cancer patients
An evaluation of two distributed deployment algorithms for Mobile Wireless Sensor Networks
Deployment is important in large wireless sensor networks (WSN), specially because nodes may fall due to failure or battery issues. Mobile WSN cope with deployment and reconfiguration at the same time: nodes may move autonomously: i) to achieve a good area coverage; and ii) to distribute as homogeneously as possible. Optimal distribution is computationally expensive and implies high tra c load, so local, distributed approaches may be preferable. This paper presents an experimental evaluation of role-based and behavior based ones. Results show that the later
are better, specially for a large number of nodes in areas with obstacles.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
- …
