4,922 research outputs found
Existence of axially symmetric static solutions of the Einstein-Vlasov system
We prove the existence of static, asymptotically flat non-vacuum spacetimes
with axial symmetry where the matter is modeled as a collisionless gas. The
axially symmetric solutions of the resulting Einstein-Vlasov system are
obtained via the implicit function theorem by perturbing off a suitable
spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page
On the steady states of the spherically symmetric Einstein-Vlasov system
Using both numerical and analytical tools we study various features of
static, spherically symmetric solutions of the Einstein-Vlasov system. In
particular, we investigate the possible shapes of their mass-energy density and
find that they can be multi-peaked, we give numerical evidence and a partial
proof for the conjecture that the Buchdahl inequality , the quasi-local mass, holds for all such steady states--both
isotropic {\em and} anisotropic--, and we give numerical evidence and a partial
proof for the conjecture that for any given microscopic equation of state--both
isotropic {\em and} anisotropic--the resulting one-parameter family of static
solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe
Extended Rein-Sehgal model for tau lepton production
The polarization density matrix formalism is employed to include the final
lepton mass and spin into the popular model by Rein and Sehgal for single pion
neutrinoproduction. We investigate the effect of the lepton mass on the
differential cross sections. The lepton polarization evaluated within the
extended RS model is compared against that follows from the single resonance
production model based upon the Rarita-Schwinger formalism with
phenomenological transition form factors.Comment: Contribution to the 3rd International Workshop on Neutrino-Nucleus
Interactions in the Few-GeV Region, 17-21 March, Gran Sasso (Italy
Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system
We consider the spherically symmetric, asymptotically flat, non-vacuum
Einstein equations, using as matter model a collisionless gas as described by
the Vlasov equation. We find explicit conditions on the initial data which
guarantee the formation of a trapped surface in the evolution which in
particular implies that weak cosmic censorship holds for these data. We also
analyze the evolution of solutions after a trapped surface has formed and we
show that the event horizon is future complete. Furthermore we find that the
apparent horizon and the event horizon do not coincide. This behavior is
analogous to what is found in certain Vaidya spacetimes. The analysis is
carried out in Eddington-Finkelstein coordinates.Comment: 2
On the Einstein-Vlasov system with hyperbolic symmetry
It is shown that a spacetime with collisionless matter evolving from data on a compact Cauchy surface with hyperbolic symmetry can be globally covered by compact hypersurfaces on which the mean curvature is constant and by compact hypersurfaces on which the area radius is constant. Results for the related cases of spherical and plane symmetry are reviewed and extended. The prospects of using the global time coordinates obtained in this way to investigate the global geometry of the spacetimes concerned are discusse
Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter
We prove a new global existence result for the asymptotically flat,
spherically symmetric Einstein-Vlasov system which describes in the framework
of general relativity an ensemble of particles which interact by gravity. The
data are such that initially all the particles are moving radially outward and
that this property can be bootstrapped. The resulting non-vacuum spacetime is
future geodesically complete.Comment: 16 page
Global existence and future asymptotic behaviour for solutions of the Einstein-Vlasov-scalar field system with surface symmetry
We prove in the cases of plane and hyperbolic symmetries a global in time
existence result in the future for comological solutions of the
Einstein-Vlasov-scalar field system, with the sources generated by a
distribution function and a scalar field, subject to the Vlasov and wave
equations respectively. The spacetime is future geodesically complete in the
special case of plane symmetry with only a scalar field. Causal geodesics are
also shown to be future complete for homogeneous solutions of the
Einstein-Vlasov-scalar field system with plane and hyperbolic symmetry.Comment: 14 page
Existence of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system
Using ODE techniques we prove the existence of large classes of initial data
satisfying the constraints for the spherically symmetric
Einstein-Vlasov-Maxwell system. These include data for which the ratio of total
charge to total mass is arbitrarily large.Comment: 12 page
- …
