2,532 research outputs found
Exclusive vs Overlapping Viewers in Media Markets
This paper investigates competition for advertisers in media markets when
viewers can subscribe to multiple channels. A central feature of the model
is that channels are monopolists in selling advertising opportunities toward
their exclusive viewers, but they can only obtain a competitive price for
advertising opportunities to multi-homing viewers. Strategic incentives of
firms in this setting are different than those in former models of media
markets. If viewers can only watch one channel, then firms compete for
marginal consumers by reducing the amount of advertising on their channels.
In our model, channels have an incentive to increase levels of advertising,
in order to reduce the overlap in viewership. We take an account of the
differences between the predictions of the two types of models and find that
our model is more consistent with recent developments in broadcasting
markets. We also show that if channels can charge subscription fees on
viewers, then symmetric firms can end up in an asymmetric equilibrium in
which one collects all or most of its revenues from advertisers, while the
other channel collects most of its revenues via viewer fees
Environmental Enforcement and the Limits of Cooperative Federalism: Will Courts Allow Citizen Suits to Pick Up the Slack
Epitaxial growth and transport properties of SrCrWO thin films
We report on the preparation and characterization of epitaxial thin films of
the double-perovskite SrCrWO by Pulsed Laser Deposition (PLD). On
substrates with low lattice mismatch like SrTiO, epitaxial SrCrWO
films with high crystalline quality can be grown in a molecular layer-by-layer
growth mode. Due to the similar ionic radii of Cr and W, these elements show no
sublattice order. Nevertheless, the measured Curie temperature is well above
400 K. Due to the reducing growth atmosphere required for double perovskites,
the SrTiO substrate surface undergoes an insulator-metal transition
impeding the separation of thin film and substrate electric transport
properties.Comment: 3 pages, 5 figure
Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films
The use of oxide materials in oxide electronics requires their controlled
epitaxial growth. Recently, it was shown that Reflection High Energy Electron
Diffraction (RHEED) allows to monitor the growth of oxide thin films even at
high oxygen pressure. Here, we report the sub-unit cell molecular or block
layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed
Laser Deposition (PLD) from stoichiometric targets. Whereas for perovskites
such as SrTiO3 or doped LaMnO3 a single RHEED intensity oscillation is found to
correspond to the growth of a single unit cell, in materials where the unit
cell is composed of several molecular layers or blocks with identical
stoichiometry, a sub-unit cell molecular or block layer growth is established
resulting in several RHEED intensity oscillations during the growth of a single
unit-cell
Epitaxy of Fe3O4 on Si(001) by pulsed laser deposition using a TiN/MgO buffer layer
Epitaxy of oxide materials on silicon (Si) substrates is of great interest
for future functional devices using the large variety of physical properties of
the oxides as ferroelectricity, ferromagnetism, or superconductivity. Recently,
materials with high spin polarization of the charge carriers have become
interesting for semiconductor-oxide hybrid devices in spin electronics. Here,
we report on pulsed laser deposition of magnetite (Fe3O4) on Si(001) substrates
cleaned by an in situ laser beam high temperature treatment. After depositing a
double buffer layer of titanium nitride (TiN) and magnesium oxide (MgO), a high
quality epitaxial magnetite layer can be grown as verified by RHEED intensity
oscillations and high resolution x-ray diffraction.Comment: submitte
The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120
Anabaena sp. PCC 7120 is a filamentous cyanobacterium that serves as a model to analyze prokaryotic cell differentiation, evolutionary development of plastids, and the regulation of nitrogen fixation. The cell wall is the cellular structure in contact with the surrounding medium. To understand the dynamics of the cell wall proteome during cell differentiation, the cell wall from Anabaena heterocysts was enriched and analyzed. In line with the recently proposed continuity of the outer membrane along the Anabaena filament, most of the proteins identified in the heterocyst cell-wall fraction are also present in the cell wall of vegetative cells, even though the lipid content of both membranes is different
Recommended from our members
Projected changes in the Asian-Australian monsoon region in 1.5°C and 2.0°C global-warming scenarios
In light of the Paris Agreement, it is essential to identify regional impacts of half a degree additional global warming to inform climate adaptation and mitigation strategies. We investigate the effects of 1.5°C and 2.0°C global warming above pre-industrial conditions, relative to present day (2006-2015), over the Asian-Australian monsoon region (AAMR) using five models from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. There is considerable inter-model variability in projected changes to mean climate and extreme events in 2.0°C and 1.5°C scenarios. There is high confidence in projected increases to mean and extreme surface temperatures over AAMR, as well as more-frequent persistent daily temperature extremes over East Asia, Australia and northern India with an additional 0.5°C warming, which are likely to occur. Mean and extreme monsoon precipitation amplify over AAMR, except over Australia at 1.5°C where there is uncertainty in the sign of the change. Persistent daily extreme precipitation events are likely to become more frequent over parts of East Asia and India with an additional 0.5°C warming. There is lower confidence in projections of precipitation change than in projections of surface temperature change. These results highlight the benefits of limiting the global-mean temperature change to 1.5°C above pre-industrial, as the severity of the above effects increases with an extra 0.5°C warming
Efficient cosmological parameter sampling using sparse grids
We present a novel method to significantly speed up cosmological parameter
sampling. The method relies on constructing an interpolation of the
CMB-log-likelihood based on sparse grids, which is used as a shortcut for the
likelihood-evaluation. We obtain excellent results over a large region in
parameter space, comprising about 25 log-likelihoods around the peak, and we
reproduce the one-dimensional projections of the likelihood almost perfectly.
In speed and accuracy, our technique is competitive to existing approaches to
accelerate parameter estimation based on polynomial interpolation or neural
networks, while having some advantages over them. In our method, there is no
danger of creating unphysical wiggles as it can be the case for polynomial fits
of a high degree. Furthermore, we do not require a long training time as for
neural networks, but the construction of the interpolation is determined by the
time it takes to evaluate the likelihood at the sampling points, which can be
parallelised to an arbitrary degree. Our approach is completely general, and it
can adaptively exploit the properties of the underlying function. We can thus
apply it to any problem where an accurate interpolation of a function is
needed.Comment: Submitted to MNRAS, 13 pages, 13 figure
Zero-order filter for diffractive focusing of de Broglie matter waves
The manipulation of neutral atoms and molecules via their de Broglie wave properties, also referred to as de Broglie matter wave optics, is relevant for several fields ranging from fundamental quantum mechanics tests and quantum metrology to measurements of interaction potentials and new imaging techniques. However, there are several challenges. For example, for diffractive focusing elements, the zero-order beam provides a challenge because it decreases the signal contrast. Here we present the experimental realization of a zero-order filter, also referred to as an order-sorting aperture for de Broglie matter wave diffractive focusing elements. The zero-order filter makes it possible to measure even at low beam intensities. We present measurements of zero-order filtered, focused, neutral helium beams generated at source stagnation pressures between 11 and 81 bars. We show that for certain conditions the atom focusing at lower source stagnation pressures (broader velocity distributions) is better than what has previously been predicted. We present simulations with the software ray-tracing simulation package mcstas using a realistic helium source configuration, which gives very good agreement with our measurements
- …
