31 research outputs found
Advances in osteosarcoma
Purpose of Review
This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease.
Recent Findings
Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme.
Summary
The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials
Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy
Direct Observation of Strand Passage by DNA-Topoisomerase and Its Limited Processivity
Type-II DNA topoisomerases resolve DNA entanglements such as supercoils, knots and catenanes by passing one segment of DNA duplex through a transient enzyme-bridged double-stranded break in another segment. The ATP-dependent passage reaction has previously been demonstrated at the single-molecule level, showing apparent processivity at saturating ATP. Here we directly observed the strand passage by human topoisomerase IIα, after winding a pair of fluorescently stained DNA molecules with optical tweezers for 30 turns into an X-shaped braid. On average 0.51±0.33 µm (11±6 turns) of a braid was unlinked in a burst of reactions taking 8±4 s, the unlinked length being essentially independent of the enzyme concentration between 0.25–37 pM. The time elapsed before the start of processive unlinking decreased with the enzyme concentration, being ∼100 s at 3.7 pM. These results are consistent with a scenario where the enzyme binds to one DNA for a period of ∼10 s, waiting for multiple diffusional encounters with the other DNA to transport it across the break ∼10 times, and then dissociates from the binding site without waiting for the exhaustion of transportable DNA segments
Oxidations of N(omega)-hydroxyarginine analogues and various N-hydroxyguanidines by NO synthase II: key role of tetrahydrobiopterin in the reaction mechanism and substrate selectivity.
International audienceOxidations of L-arginine 2, homo-L-arginine 1, their N(omega)-hydroxy derivatives 4 and 3 (NOHA and homo-NOHA, respectively), and four N-hydroxyguanidines, N(omega)-hydroxynor-L-arginine 5 (nor-NOHA), N(omega)-hydroxydinor-L-arginine 6 (dinor-NOHA), N-(4-chlorophenyl)-N'-hydroxyguanidine (8), and N-hydroxyguanidine (7) itself, by either NOS II or (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4)-free NOS II, have been studied in a comparative manner. Recombinant BH4-free NOS II catalyzes the oxidation of all N-hydroxyguanidines by NADPH and O2, with formation of NO2(-) and NO3(-) at rates between 20 and 80 nmol min(-1) (mg of protein)(-1). In the case of compound 8, formation of the corresponding urea and cyanamide was also detected besides that of NO2(-) and NO3(-). These BH4-free NOS II-dependent reactions are inhibited by modulators of electron transfer in NOS such as thiocitrulline (TC) or imidazole (ImH), but not by Arg, and are completely suppressed by superoxide dismutase (SOD). They exhibit characteristics very similar to those previously reported for microsomal cytochrome P450-catalyzed oxidation of N-hydroxyguanidines. Both P450 and BH4-free NOS II reactions appear to be mainly performed by O2(.-) derived from the oxidase function of those heme proteins. In the presence of increasing concentrations of BH4, these nonselective oxidations progressively disappear while a much more selective monooxygenation takes place only with the N-hydroxyguanidines that are recognized well by NOS II, NOHA, homo-NOHA, and 8. These monooxygenations are much more chemoselective (8 being selectively transformed into the corresponding urea and NO) and are inhibited by Arg but not by SOD, as expected for reactions performed by the NOS Fe(II)-O2 species. Altogether, these results provide a further clear illustration of the key role of BH4 in regulating the monooxygenase/oxidase ratio in NOS. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics such as N-hydroxyguanidines, not only via their monooxygenase function but also via their oxidase function.Oxidations of L-arginine 2, homo-L-arginine 1, their N(omega)-hydroxy derivatives 4 and 3 (NOHA and homo-NOHA, respectively), and four N-hydroxyguanidines, N(omega)-hydroxynor-L-arginine 5 (nor-NOHA), N(omega)-hydroxydinor-L-arginine 6 (dinor-NOHA), N-(4-chlorophenyl)-N'-hydroxyguanidine (8), and N-hydroxyguanidine (7) itself, by either NOS II or (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4)-free NOS II, have been studied in a comparative manner. Recombinant BH4-free NOS II catalyzes the oxidation of all N-hydroxyguanidines by NADPH and O2, with formation of NO2(-) and NO3(-) at rates between 20 and 80 nmol min(-1) (mg of protein)(-1). In the case of compound 8, formation of the corresponding urea and cyanamide was also detected besides that of NO2(-) and NO3(-). These BH4-free NOS II-dependent reactions are inhibited by modulators of electron transfer in NOS such as thiocitrulline (TC) or imidazole (ImH), but not by Arg, and are completely suppressed by superoxide dismutase (SOD). They exhibit characteristics very similar to those previously reported for microsomal cytochrome P450-catalyzed oxidation of N-hydroxyguanidines. Both P450 and BH4-free NOS II reactions appear to be mainly performed by O2(.-) derived from the oxidase function of those heme proteins. In the presence of increasing concentrations of BH4, these nonselective oxidations progressively disappear while a much more selective monooxygenation takes place only with the N-hydroxyguanidines that are recognized well by NOS II, NOHA, homo-NOHA, and 8. These monooxygenations are much more chemoselective (8 being selectively transformed into the corresponding urea and NO) and are inhibited by Arg but not by SOD, as expected for reactions performed by the NOS Fe(II)-O2 species. Altogether, these results provide a further clear illustration of the key role of BH4 in regulating the monooxygenase/oxidase ratio in NOS. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics such as N-hydroxyguanidines, not only via their monooxygenase function but also via their oxidase function
Bromocriptine is a strong inhibitor of brain nitric oxide synthase: possible consequences for the origin of its therapeutic effects
AbstractThe ergot alkaloid bromocriptine (BKT) was found to act as a strong inhibitor of purified neuronal nitric oxide synthase (NOS) (IC50=10±2 μM) whereas it was poorly active towards inducible macrophage NOS (IC50>100 μM). BKT affects the activation of NOS by calmodulin, as it not only inhibits l-arginine oxidation to NO and l-citrulline but also NADPH oxidation and calmodulin-dependent cytochrome c reduction catalyzed by neuronal NOS. These results suggest that BKT could exert some of its therapeutic effects by interfering with the NOS-dependent formation of nitric oxide and/or superoxide ion in various tissues
Targeting human Rad51 by specific DNA aptamers induces inhibition of homologous recombination
International audienc
Direct observation of twisting steps during Rad51 polymerization on DNA.
International audienc
Microperoxidase 8 (MP8) as a Convenient Model for Hemoproteins: Formation and Characterisation of New Iron(II)-Nitrosoalkane Complexes of Biological Relevance
Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction
