3,000 research outputs found

    Microlensing Surveys of M31 in the Wide Field Imaging Era

    Full text link
    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.Comment: 10 pages, 4 figures, 2 table

    PS1-10jh Continues to Follow the Fallback Accretion Rate of a Tidally Disrupted Star

    Full text link
    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with HST/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t5/3t^{-5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ~ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer H\delta absorption in the host galaxy strong enough to be indicative of a rare, post-starburst "E+A" galaxy as reported by Arcavi et al. (2014). The light curve of PS1-10jh over a baseline of 3.5 yr is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He II \lambda 4686/H\alpha > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically-thick, extended reprocessing envelope.Comment: Accepted for publication in ApJ Letter

    Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption

    Full text link
    Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky Way. It became the second-brightest star in the sky during its mid-19th century "Great Eruption," but then faded from view (with only naked-eye estimates of brightness). Its eruption is unique among known astronomical transients in that it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3 kpc away, spatially resolved studies of the nebula have constrained the ejected mass and velocity, indicating that in its 19th century eruption, Eta Car ejected more than 10 M_solar in an event that had 10% of the energy of a typical core-collapse supernova without destroying the star. Here we report the discovery of light echoes of Eta Carinae which appear to be from the 1838-1858 Great Eruption. Spectra of these light echoes show only absorption lines, which are blueshifted by -210 km/s, in good agreement with predicted expansion speeds. The light-echo spectra correlate best with those of G2-G5 supergiant spectra, which have effective temperatures of ~5000 K. In contrast to the class of extragalactic outbursts assumed to be analogs of Eta Car's Great Eruption, the effective temperature of its outburst is significantly cooler than allowed by standard opaque wind models. This indicates that other physical mechanisms like an energetic blast wave may have triggered and influenced the eruption.Comment: Accepted for publication by Nature; 4 pages, 4 figures, SI: 6 pages, 3 figures, 5 table

    The Unusual Variability of the Large Magellanic Cloud Planetary Nebula RPJ 053059-683542

    Full text link
    We present images and light curves of the bipolar Planetary Nebula RPJ 053059-683542 that was discovered in the Reid-Parker AAO/UKST H-alpha survey of the Large Magellanic Cloud (LMC). The emission from this object appears entirely nebular, with the central star apparently obscured by a central band of absorption that bisects the nebula. The light curves, which were derived from images from the SuperMACHO project at CTIO, showed significant, spatially resolved variability over the period 2002 January through 2005 December. Remarkably, the emission from the two bright lobes of the nebula vary either independently, or similarly but with a phase lag of at least one year. The optical spectra show a low level of nebular excitation, and only modest N enrichment. Infrared photometry from the 2MASS and SAGE surveys indicates the presence of a significant quantity of dust. The available data imply that the central star has a close binary companion, and that the system has undergone some kind of outburst event that caused the nebular emission to first brighten and then fade. Further monitoring, high-resolution imaging, and detailed IR polarimetry and spectroscopy would uncover the nature of this nebula and the unseen ionizing source.Comment: Accepted for ApJ Letters; 6 page

    Asymmetry in the Outburst of SN 1987A Detected Using Light Echo Spectroscopy

    Full text link
    We report direct evidence for asymmetry in the early phases of SN 1987A via optical spectroscopy of five fields of its light echo system. The light echoes allow the first few hundred days of the explosion to be reobserved, with different position angles providing different viewing angles to the supernova. Light echo spectroscopy therefore allows a direct spectroscopic comparison of light originating from different regions of the photosphere during the early phases of SN 1987A. Gemini multi-object spectroscopy of the light echo fields shows fine-structure in the H-alpha line as a smooth function of position angle on the near-circular light echo rings. H-alpha profiles originating from the northern hemisphere of SN 1987A show an excess in redshifted emission and a blue knee, while southern hemisphere profiles show an excess of blueshifted H-alpha emission and a red knee. This fine-structure is reminiscent of the "Bochum event" originally observed for SN 1987A, but in an exaggerated form. Maximum deviation from symmetry in the H-alpha line is observed at position angles 16 and 186 degrees, consistent with the major-axis of the expanding elongated ejecta. The asymmetry signature observed in the H-alpha line smoothly diminishes as a function of viewing angle away from the poles of the elongated ejecta. We propose an asymmetric two-sided distribution of 56Ni most dominant in the southern far quadrant of SN 1987A as the most probable explanation of the observed light echo spectra. This is evidence that the asymmetry of high-velocity 56Ni in the first few hundred days after explosion is correlated to the geometry of the ejecta some 25 years later.Comment: 15 pages, 24 figures. Accepted to ApJ (with 2 additional figures

    Public Participation in Contaminated Communities

    Get PDF
    The present study examines seven current, ongoing cases of public participation across a broader spectrum of communities. In contrast to earlier notorious historical failures, such as those at Love Canal, Woburn, and Times Beach, the cases in this study explore experiences considered relatively successful by both the agencies and the communities. The study sought to better understand the determinants of successful public involvement in contaminated communities where: (1) site characterization, cleanup options, and economic redevelopment were issues of concern and conflict; (2) more than one federal agency was involved; (3) state and local agencies were also involved; and (4) environmental justice was often an issue. The purposes of the study were to: (1) identify those factors most important to, and essential for, successful community involvement, (2) evaluate or suggest initiatives to further enhance successful public participation, and (3) identify options for more successful interaction and coordination of federal, state, and local agencies in their efforts to promote environmental and public health goals in contaminated communities.The study focused on initiatives which: enhance communication, outreach, and learning in the community; build skills and capability in the community; and provide for increased community participation in, and access to, government decisions. Special attention was paid to public participation problems in economically disadvantaged and minority communities with disproportionate environmental burdens (i.e., environmental justice communities), and to mechanisms for improving interagency coordination at all levels of government
    corecore