5,874 research outputs found
THE EFFECTS OF FIELD EMITTED ELECTRONS ON RF SURFACE
The ever-growing demand for higher RF gradients has
considerably increased the risk of breakdown in
accelerating structures. Field emission is the most
common form of RF breakdown that generates free
electrons capable of inflicting irreversible damages on the
RF surface. This paper presents a systematic experimental
and simulation programme to understand possible sources
and their influence on RF cavity operatio
Electronic phase separation near the superconductor-insulator transition of Nd1+xBa2−xCu3O7−δ thin films studied by an electric-field-induced doping effect
We report a detailed study of the transport properties of Nd(1+x)Ba(2-x)Cu(3)O(7-delta) thin films with doping changed by field effect. The data cover the whole superconducting to insulating transition and show remarkable Similarities with the effect of chemical doping in high critical temperature superconductors. The results suggest that the add-on of carriers is accompanied by an electronic phase separation, independent on the details of the doping mechanism
On Infinite Quon Statistics and "Ambiguous" Statistics
We critically examine a recent suggestion that "ambiguous" statistics is
equivalent to infinite quon statistics and that it describes a dilute,
nonrelativistics ideal gas of extremal black holes. We show that these two
types of statistics are different and that the description of extremal black
holes in terms of "ambiguous" statistics cannot be applied.Comment: Latex, 9 pages, no figures, to appear in Mod.Phys.Lett.
3D Simulation of the Effects of Surface Defects on Field Emitted Electrons
The ever-growing demand for higher beam energies has dramatically increased the risk of RF breakdown, limiting the maximum achievable accelerating gradient. Field emission is the most frequently encountered RF breakdown where it occurs at regions of locally enhanced electric field. Electrons accelerated across the cavity as they tunnel through the surface in the presence of microscopic defects. Upon Impact, most of the kinetic energy is converted into heat and stress. This can inflict irreversible damage to the surface, creating additional field emission sites. This work aims to investigate, through simulation, the physics involved during both emission and impact of electrons. A newly developed 3D field model of an 805 MHz cavity is generated by COMSOL Multiphysics. Electron tracking is performed using a Matlab based code, calculating the relevant parameters needed by employing fourth Order Runge Kutta integration. By studying such behaviours in 3D, it is possible to identify how the cavity surface can alter the local RF field and lead to breakdown and subsequent damages. The ultimate aim is to introduce new surface standards to ensure better cavity performance
GaN and InN nanowires grown by MBE: a comparison
Morphological, optical and transport properties of GaN and InN nanowires
grown by molecular beam epitaxy (MBE) have been studied. The differences
between the two materials in respect to growth parameters and optimization
procedure was stressed. The nanowires crystalline quality has been investigated
by means of their optical properties. A comparison of the transport
characteristics was given. For each material a band schema was shown, which
takes into account transport and optical features and is based on Fermi level
pinning at the surface.Comment: 5 pages, 5 figure
What we observe is biased by what other people tell us: beliefs about the reliability of gaze behavior modulate attentional orienting to gaze cues
For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes
Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: evidence from optical second harmonic generation
The so-called "polar catastrophe", a sudden electronic reconstruction taking
place to compensate for the interfacial ionic polar discontinuity, is currently
considered as a likely factor to explain the surprising conductivity of the
interface between the insulators LaAlO3 and SrTiO3. We applied optical second
harmonic generation, a technique that a priori can detect both mobile and
localized interfacial electrons, to investigating the electronic polar
reconstructions taking place at the interface. As the LaAlO3 film thickness is
increased, we identify two abrupt electronic rearrangements: the first takes
place at a thickness of 3 unit cells, in the insulating state; the second
occurs at a thickness of 4-6 unit cells, i.e., just above the threshold for
which the samples become conducting. Two possible physical scenarios behind
these observations are proposed. The first is based on an electronic transfer
into localized electronic states at the interface that acts as a precursor of
the conductivity onset. In the second scenario, the signal variations are
attributed to the strong ionic relaxations taking place in the LaAlO3 layer
Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters
Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons.
This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue
Brief report: how adolescents with ASD process social information in complex scenes. Combining evidence from eye movements and verbal descriptions
We investigated attention, encoding and processing of social aspects of complex photographic scenes. Twenty-four high-functioning adolescents (aged 11–16) with ASD and 24 typically developing matched control participants viewed and then described a series of scenes, each containing a person. Analyses of eye movements and verbal descriptions provided converging evidence that both groups displayed general interest in the person in each scene but the salience of the person was reduced for the ASD participants. Nevertheless, the verbal descriptions revealed that participants with ASD frequently processed the observed person’s emotion or mental state without prompting. They also often mentioned eye-gaze direction, and there was evidence from eye movements and verbal descriptions that gaze was followed accurately. The combination of evidence from eye movements and verbal descriptions provides a rich insight into the way stimuli are processed overall. The merits of using these methods within the same paradigm are discussed
- …
