22,244 research outputs found
Recommended from our members
On the exceptional damage-tolerance of gradient metallic materials
An experimental study is described on the fracture toughness and micro-mechanisms associated with the initiation and propagation of cracks in metallic nickel containing marked gradients in grain size, ranging from ∼30 nm to ∼4 μm. Specifically, cracks are grown in a gradient structured (GS) nickel with grain-size gradient ranging from the coarse macro-scale to nano-scale (CG → NG) and vice versa (NG → CG), with the measured crack-resistance R-curves compared to the corresponding behavior in uniform nano-grained (NG) and coarse-grained (CG) materials. It is found that the gradient structures display a much-improved combination of high strength and toughness compared to uniform grain-sized materials. However, based on J-integral measurements in the gradient materials, the crack-initiation toughness is far higher for cracks grown in the direction of the coarse-to-nano grained gradient than vice versa, a result which we ascribe primarily to excessive crack-tip blunting in the coarse-grained microstructure. Both gradient structures, however, display marked rising R-curve behavior with exceptional crack-growth toughnesses exceeding 200 MPa.m½
Count three for wear able computers
This paper is a postprint of a paper submitted to and accepted for publication in the Proceedings of the IEE Eurowearable 2003 Conference, and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.
A revised version of this paper was also published in Electronics Systems and Software, also subject to Institution of Engineering and Technology Copyright. The copy of record is also available at the IET Digital Library.A description of 'ubiquitous computer' is presented. Ubiquitous computers imply portable computers embedded into everyday objects, which would replace personal computers. Ubiquitous computers can be mapped into a three-tier scheme, differentiated by processor performance and flexibility of function. The power consumption of mobile devices is one of the most important design considerations. The size of a wearable system is often a design limitation
Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images
We propose a novel scheme for designing fuzzy rule based classifier. An SOFM
based method is used for generating a set of prototypes which is used to
generate a set of fuzzy rules. Each rule represents a region in the feature
space that we call the context of the rule. The rules are tuned with respect to
their context. We justified that the reasoning scheme may be different in
different context leading to context sensitive inferencing. To realize context
sensitive inferencing we used a softmin operator with a tunable parameter. The
proposed scheme is tested on several multispectral satellite image data sets
and the performance is found to be much better than the results reported in the
literature.Comment: 23 pages, 7 figure
Dynamical ordering in the c-axis in 3D driven vortex lattices
We present molecular dynamics simulations of driven vortices in layered
superconductors in the presence of an external homogeneous force and point
disorder. We use a model introduced by J.R.Clem for describing 3D vortex lines
as stacks of 2D pancake vortices where only magnetic interactions are
considered and the Josephson interlayer coupling is neglected. We numerically
evaluate the long-range magnetic interaction between pancake vortices exactly.
We analyze the vortex correlation along the field direction on (c-axis). We
find that above the critical current, in the ``plastic flow'' regime, pancakes
are completely uncorrelated in the c-direction. When increasing the current,
there is an onset of correlation along the c-axis at the transition from
plastic flow to a moving smectic phase. This transition coincides with the peak
in the differential resistance.Comment: 4 pages, 3 figures, needs espcrc2.sty. Submitted to the proceedings
of the M2S-HTSC-IV Conferenc
Elevated arousal at time of decision-making is not the arbiter of risk avoidance in chickens
The somatic marker hypothesis proposes that humans recall previously experienced physiological responses to aid decision-making under uncertainty. However, little is known about the mechanisms used by non-human animals to integrate risk perception with predicted gains and losses. We monitored the behaviour and physiology of chickens when the choice between a high-gain (large food quantity), high-risk (1 in 4 probability of receiving an air-puff) option (HGRAP) or a low-gain (small food quantity), no-risk (of an air-puff) (LGNAP) option. We assessed when arousal increased by considering different stages of the decision-making process (baseline, viewing, anticipation, reward periods) and investigated whether autonomic responses influenced choice outcome both immediately and in the subsequent trial. Chickens were faster to choose and their heart-rate significantly increased between the viewing and anticipation (post-decision, pre-outcome) periods when selecting the HGRAP option. This suggests that they responded physiologically to the impending risk. Additionally, arousal was greater following a HGRAP choice that resulted in an air-puff, but this did not deter chickens from subsequently choosing HGRAP. In contrast to human studies, we did not find evidence that somatic markers were activated during the viewing period, suggesting that arousal is not a good measure of avoidance in non-human animals
Skyrmion Lattice in a Chiral Magnet
Skyrmions represent topologically stable field configurations with
particle-like properties. We used neutron scattering to observe the spontaneous
formation of a two-dimensional lattice of skyrmion lines, a type of magnetic
vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice
stabilizes at the border between paramagnetism and long-range helimagnetic
order perpendicular to a small applied magnetic field regardless of the
direction of the magnetic field relative to the atomic lattice. Our study
experimentally establishes magnetic materials lacking inversion symmetry as an
arena for new forms of crystalline order composed of topologically stable spin
states
- …
