2,755 research outputs found
Choosing effective methods for design diversity - How to progress from intuition to science
Design diversity is a popular defence against design faults in safety critical systems. Design diversity is at times pursued by simply isolating the development teams of the different versions, but it is presumably better to "force" diversity, by appropriate prescriptions to the teams. There are many ways of forcing diversity. Yet, managers who have to choose a cost-effective combination of these have little guidance except their own intuition. We argue the need for more scientifically based recommendations, and outline the problems with producing them. We focus on what we think is the standard basis for most recommendations: the belief that, in order to produce failure diversity among versions, project decisions should aim at causing "diversity" among the faults in the versions. We attempt to clarify what these beliefs mean, in which cases they may be justified and how they can be checked or disproved experimentally
On Systematic Design of Protectors for Employing OTS Items
Off-the-shelf (OTS) components are increasingly used in application areas with stringent dependability requirements. Component wrapping is a well known structuring technique used in many areas. We propose a general approach to developing protective wrappers that assist in integrating OTS items with a focus on the overall system dependability. The wrappers are viewed as redundant software used to detect errors or suspicious activity and to execute appropriate recovery when possible; wrapper development is considered as a part of system integration activities. Wrappers are to be rigorously specified and executed at run time as a means of protecting OTS items against faults in the rest of the system, and the system against the OTS item's faults. Possible symptoms of erroneous behaviour to be detected by a protective wrapper and possible actions to be undertaken in response are listed and discussed. The information required for wrapper development is provided by traceability analysis. Possible approaches to implementing “protectors” in the standard current component technologies are briefly outline
Medical card of a pulmonary tuberculosis in-patient
ИСТОРИЯ БОЛЕЗНИОБСЛЕДОВАНИЕ БОЛЬНОГОТУБЕРКУЛЕЗ ЛЕГКИХУЧЕБНО-МЕТОДИЧЕСКИЕ ПОСОБИЯФТИЗИОПУЛЬМОНОЛОГИЯУчебно-методическое пособие предназначено для самостоятельной подготовки к курации больных в клинике и написанию учебной истории болезни
Edge states in graphene quantum dots: Fractional quantum Hall effect analogies and differences at zero magnetic field
We investigate the way that the degenerate manifold of midgap edge states in
quasicircular graphene quantum dots with zig-zag boundaries supports, under
free-magnetic-field conditions, strongly correlated many-body behavior
analogous to the fractional quantum Hall effect (FQHE), familiar from the case
of semiconductor heterostructures in high magnetic fields. Systematic
exact-diagonalization (EXD) numerical studies are presented for the first time
for 5 <= N <= 8 fully spin-polarized electrons and for total angular momenta in
the range of N(N-1)/2 <= L <= 150. We present a derivation of a
rotating-electron-molecule (REM) type wave function based on the methodology
introduced earlier [C. Yannouleas and U. Landman, Phys. Rev. B 66, 115315
(2002)] in the context of the FQHE in two-dimensional semiconductor quantum
dots. The EXD wave functions are compared with FQHE trial functions of the
Laughlin and the derived REM types. It is found that a variational extension of
the REM offers a better description for all fractional fillings compared with
that of the Laughlin functions (including total energies and overlaps), a fact
that reflects the strong azimuthal localization of the edge electrons. In
contrast with the multiring arrangements of electrons in circular semiconductor
quantum dots, the graphene REMs exhibit in all instances a single (0,N)
polygonal-ring molecular (crystalline) structure, with all the electrons
localized on the edge. Disruptions in the zig-zag boundary condition along the
circular edge act effectively as impurities that pin the electron molecule,
yielding single-particle densities with broken rotational symmetry that portray
directly the azimuthal localization of the edge electrons.Comment: Revtex. 14 pages with 13 figures and 2 tables. Physical Review B, in
press. For related papers, see http://www.prism.gatech.edu/~ph274cy
The form factors from Analyticity and Unitarity
Analyticity and unitarity techniques are employed to obtain bounds on the
shape parameters of the scalar and vector form factors of semileptonic
decays. For this purpose we use vector and scalar correlators evaluated in
pQCD, a low energy theorem for scalar form factor, lattice results for the
ratio of kaon and pion decay constants, chiral perturbation theory calculations
for the scalar form factor at the Callan-Treiman point and experimental
information on the phase and modulus of form factors up to an energy
\tin=1 {\rm GeV}^2. We further derive regions on the real axis and in the
complex-energy plane where the form factors cannot have zeros.Comment: 6 pages, 5 figures; Seminar given at DAE-BRNS Workshop on Hadron
Physics Bhabha Atomic Research Centre, Mumbai, India October 31-November 4,
2011, submitted to Proceeding
Study of He+C Elastic Scattering Using a Microscopic Optical Potential
The He+C elastic scattering data at beam energies of 3, 38.3 and
41.6 MeV/nucleon are studied utilizing the microscopic optical potentials
obtained by a double-folding procedure and also by using those inherent in the
high-energy approximation. The calculated optical potentials are based on the
neutron and proton density distributions of colliding nuclei established in an
appropriate model for He and obtained from the electron scattering form
factors for C. The depths of the real and imaginary parts of the
microscopic optical potentials are considered as fitting parameters. At low
energy the volume optical potentials reproduce sufficiently well the
experimental data. At higher energies, generally, additional surface terms
having form of a derivative of the imaginary part of the microscopic optical
potential are needed. The problem of ambiguity of adjusted optical potentials
is resolved requiring the respective volume integrals to obey the determined
dependence on the collision energy. Estimations of the Pauli blocking effects
on the optical potentials and cross sections are also given and discussed.
Conclusions on the role of the aforesaid effects and on the mechanism of the
considered processes are made.Comment: 12 pages, 9 figures, accepted for publication in Physical Review
- …
