2,001 research outputs found
Molecular hydrodynamics from memory kernels
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t−3/2. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius
Recommended from our members
Polarization control at the microscopic and electronic structure observatory
The new Microscopic and Electronic Structure Observatory (MAESTRO) at the Advanced Light Source (ALS) in Berkeley provides X-rays of variable polarization, produced by an elliptically polarized undulator (EPU), for angle resolved photoemission (ARPES) and photoemission electron microscopy (PEEM) experiments. The interpretation of photoemission data, in particular of dichroism effects in ARPES, requires the precise knowledge of the exact polarization state. Numerical simulations show that the first harmonics of the EPU at MAESTRO provides soft X-rays of almost 100% on axis polarization. However, the higher harmonics as well as the downstream optical elements of the beamline, have a considerable impact on the polarization of the light delivered to the experimental end-station. Employing a simple reflective polarimeter, the polarization is characterized for variable EPU and beamline settings and the overall degree of polarization in the MAESTRO end-stations is estimated to be on the order of 83%
Cluster sum rules for three-body systems with angular-momentum dependent interactions
We derive general expressions for non-energy weighted and energy-weighted
cluster sum rules for systems of three charged particles. The interferences
between pairs of particles are found to play a substantial role. The
energy-weighted sum rule is usually determined by the kinetic energy operator,
but we demonstrate that it has similar additional contributions from the
angular momentum and parity dependence of two- and three-body potentials
frequently used in three-body calculations. The importance of the different
contributions is illustrated with the dipole excitations in He. The results
are compared with the available experimental data.Comment: 11 pages, 3 figures, 2 table
Tunable Polaronic Conduction in Anatase TiO2
Oxygen vacancies created in anatase TiO2 by UV photons (80–130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.open1192sciescopu
Semi-relativistic description of quasielastic neutrino reactions and superscaling in a continuum shell model
The so-called semi-relativistic expansion of the weak charged current in
powers of the initial nucleon momentum is performed to describe
charge-changing, quasielastic neutrino reactions at
intermediate energies. The quality of the expansion is tested by comparing with
the relativistic Fermi gas model using several choices of kinematics of
interest for ongoing neutrino oscillation experiments. The new current is then
implemented in a continuum shell model together with relativistic kinematics to
investigate the scaling properties of and cross
sections.Comment: 33 pages, 10 figures, to appear in PR
Topological surface states above the Fermi energy in
We report a detailed experimental study of the band structure of the recently
discovered topological material . Using
the combination of scanning tunneling spectroscopy and angle-resolved
photo-emission spectroscopy with surface K-doping, we probe the band structure
of with energy and momentum resolution
above the Fermi level. Our experiments show the presence of multiple surface
states with a linear Dirac-like dispersion, consistent with the predictions
from previously reported band structure calculations. In particular, scanning
tunneling spectroscopy measurements provide the first experimental evidence for
the strong topological surface state predicted at 460 meV, which stems from the
band inversion between Hf-d and Te-p orbitals. This band inversion comprised of
more localized d-states could result in a better surface-to-bulk conductance
ratio relative to more traditional topological insulators.Comment: Supplementary materials available upon reques
Dual character of the electronic structure in YBa2Cu4O8: conduction bands of CuO2 planes and CuO chains
We use microprobe Angle-Resolved Photoemission Spectroscopy (muARPES) to
separately investigate the electronic properties of CuO2 planes and CuO chains
in the high temperature superconductor, YBa2Cu4O8. In the CuO2 planes, a two
dimensional (2D) electronic structure with nearly momentum independent bilayer
splitting is observed. The splitting energy is 150 meV at (pi,0), almost 50%
larger than in Bi2Sr2CaCu2O(8+d) and the electron scattering at the Fermi level
in the bonding band is about 1.5 times stronger than in the antibonding band.
The CuO chains have a quasi one dimensional (1D) electronic structure. We
observe two 1D bands separated by ~ 550meV: a conducting band and an insulating
band with an energy gap of ~ 240meV. We find that the conduction electrons are
well confined within the planes and chains with a non-trivial hybridization.Comment: 4 pages, 4 figure
- …
