446 research outputs found

    Monte Carlo Dynamics of driven Flux Lines in Disordered Media

    Full text link
    We show that the common local Monte Carlo rules used to simulate the motion of driven flux lines in disordered media cannot capture the interplay between elasticity and disorder which lies at the heart of these systems. We therefore discuss a class of generalized Monte Carlo algorithms where an arbitrary number of line elements may move at the same time. We prove that all these dynamical rules have the same value of the critical force and possess phase spaces made up of a single ergodic component. A variant Monte Carlo algorithm allows to compute the critical force of a sample in a single pass through the system. We establish dynamical scaling properties and obtain precise values for the critical force, which is finite even for an unbounded distribution of the disorder. Extensions to higher dimensions are outlined.Comment: 4 pages, 3 figure

    Higher correlations, universal distributions and finite size scaling in the field theory of depinning

    Full text link
    Recently we constructed a renormalizable field theory up to two loops for the quasi-static depinning of elastic manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much simpler diagrammatic rules than anticipated. This is applied to the universal scaled width-distribution. The expansion in d=4-epsilon predicts that the scaled distribution coincides to the lowest orders with the one for a Gaussian theory with propagator G(q)=1/q^(d+2 \zeta), zeta being the roughness exponent. The deviations from this Gaussian result are small and involve higher correlation functions, which are computed here for different boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the stability of the fixed point. We find that the correction-to-scaling exponent is omega=-epsilon and not -epsilon/3 as used in the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the roughness of interfaces grows as a power of a logarithm instead of a pure power.Comment: 15 pages revtex4. See also preceding article cond-mat/030146

    Depinning transition and thermal fluctuations in the random-field Ising model

    Full text link
    We analyze the depinning transition of a driven interface in the 3d random-field Ising model (RFIM) with quenched disorder by means of Monte Carlo simulations. The interface initially built into the system is perpendicular to the [111]-direction of a simple cubic lattice. We introduce an algorithm which is capable of simulating such an interface independent of the considered dimension and time scale. This algorithm is applied to the 3d-RFIM to study both the depinning transition and the influence of thermal fluctuations on this transition. It turns out that in the RFIM characteristics of the depinning transition depend crucially on the existence of overhangs. Our analysis yields critical exponents of the interface velocity, the correlation length, and the thermal rounding of the transition. We find numerical evidence for a scaling relation for these exponents and the dimension d of the system.Comment: 6 pages, including 9 figures, submitted for publicatio

    Origin of the roughness exponent in elastic strings at the depinning threshold

    Full text link
    Within a recently developed framework of dynamical Monte Carlo algorithms, we compute the roughness exponent ζ\zeta of driven elastic strings at the depinning threshold in 1+1 dimensions for different functional forms of the (short-range) elastic energy. A purely harmonic elastic energy leads to an unphysical value for ζ\zeta. We include supplementary terms in the elastic energy of at least quartic order in the local extension. We then find a roughness exponent of ζ0.63\zeta \simeq 0.63, which coincides with the one obtained for different cellular automaton models of directed percolation depinning. The quartic term translates into a nonlinear piece which changes the roughness exponent in the corresponding continuum equation of motion. We discuss the implications of our analysis for higher-dimensional elastic manifolds in disordered media.Comment: 4 pages, 2 figure

    Stochastic boundary conditions in the deterministic Nagel-Schreckenberg traffic model

    Full text link
    We consider open systems where cars move according to the deterministic Nagel-Schreckenberg rules and with maximum velocity vmax>1{v}_{max} > 1, what is an extension of the Asymmetric Exclusion Process (ASEP). It turns out that the behaviour of the system is dominated by two features: a) the competition between the left and the right boundary b) the development of so-called "buffers" due to the hindrance an injected car feels from the front car at the beginning of the system. As a consequence, there is a first-order phase transition between the free flow and the congested phase accompanied by the collapse of the buffers and the phase diagram essentially differs from that of vmax=1{v}_{max} = 1 (ASEP).Comment: 29 pages, 26 figure

    Simulation of textures and Lankford values for face centered cubic polycrystaline metals by using a modified Taylor model

    Get PDF
    This report presents a modified Taylor model is presented which statistically considers grain interaction in a polycrystalline aggregate in terms of a standard deviation for the symmetric part of the velocity gradient. The model can be solved using a Newton iteration method. We simulate crystallographic rolling textures and the anisotropy arising from uniaxial tension tests (Lankford values for different directions in the rolling sheet plane). The results reveal in part a good agreement with experimental data

    Hysteretic dynamics of domain walls at finite temperatures

    Get PDF
    Theory of domain wall motion in a random medium is extended to the case when the driving field is below the zero-temperature depinning threshold and the creep of the domain wall is induced by thermal fluctuations. Subject to an ac drive, the domain wall starts to move when the driving force exceeds an effective threshold which is temperature and frequency-dependent. Similarly to the case of zero-temperature, the hysteresis loop displays three dynamical phase transitions at increasing ac field amplitude h0h_0. The phase diagram in the 3-d space of temperature, driving force amplitude and frequency is investigated.Comment: 4 pages, 2 figure

    Grain boundary mechanics in Crystal Plasticity Finite Element Modeling

    Get PDF
    Crystal mechanics-FEM 3D EBSD Materials science of arthropods: lobste

    2-loop Functional Renormalization Group Theory of the Depinning Transition

    Full text link
    We construct the field theory which describes the universal properties of the quasi-static isotropic depinning transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove two-loop renormalizability, obtain the 2-loop beta-function and show the generation of "irreversible" anomalous terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to differ at 2-loop order. We obtain the roughness exponent zeta and dynamical exponent z to order epsilon^2. This allows to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-field disorder does indeed attract all disorder of shorter range. It also shows that the conjecture zeta=epsilon/3 is incorrect, and allows to compute the violations, as zeta=epsilon/3 (1 + 0.14331 epsilon), epsilon=4-d. This solves a longstanding discrepancy with simulations. For long-range elasticity it yields zeta=epsilon/3 (1 + 0.39735 epsilon), epsilon=2-d (vs. the standard prediction zeta=1/3 for d=1), in reasonable agreement with the most recent simulations. The high value of zeta approximately 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack fronts is discussed.Comment: 32 pages, 17 figures, revtex
    corecore