151 research outputs found
Association of Antibody-Drug Conjugate (ADC) Target Expression and Interstitial Lung Disease (ILD) in Non-Small-Cell Lung Cancer (NSCLC): Association or Causation or Neither?
Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide, despite advances in immune checkpoint inhibitors and targeted therapies. Antibody-drug conjugates (ADCs) represent a promising therapeutic approach by delivering cytotoxic agents specifically to cancer cells, potentially reducing harm to healthy tissues. This study aims to explore the effectiveness and challenges associated with ADCs in NSCLC, with a focus on drug-induced interstitial lung disease (D-ILD).
A comprehensive literature review was conducted across MEDLINE (Ovid), Embase (Elsevier), CENTRAL (Cochrane Library), and other sources up to March 2023, to identify ADCs used in NSCLC treatment and their associated risk of D-ILD. The incidence of ILD was analyzed from clinical trial data, while ADC target expression was examined through RNA and protein levels in normal and tumor lung tissues.
Our findings highlight the therapeutic potential of ADCs in NSCLC, as evidenced by significant clinical outcomes. However, the occurrence of D-ILD presents a notable challenge, as its incidence was not directly correlated with the expression levels of the target antigens. This suggests that D-ILD may result from factors beyond antigen expression, including the cytotoxic payload and linker characteristics of ADCs.
ADCs offer a promising avenue for NSCLC treatment. Nonetheless, the risk of D-ILD necessitates a balanced approach in ADC development, focusing on optimizing linker and payload properties to mitigate this adverse effect. Further research is essential to better understand and manage D-ILD, ensuring the safe and effective use of ADCs in clinical practice
Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134863/1/dc23549.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134863/2/dc23549_am.pd
Intragenic EGFR::EGFR.E1E8 Fusion (EGFRvIII) in 4331 Solid Tumors
Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2–7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy
Intragenic GFR::EGFRE1E8 Fusion (EGFRvIII) in 4331 Solid Tumors
Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2–7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy
Intragenic EGFR::EGFR.E1E8 Fusion (EGFRvIII) in 4331 Solid Tumors
Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2–7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy
Intragenic EGFR::EGFR.E1E8 Fusion (EGFRvIII) in 4331 Solid Tumors
Simple Summary
Epidermal growth factor receptor variant III (EGFRvIII) is caused by the deletion of six exons and the fusion of exons 1 to exon 8. EGFRvIII occurs frequently in glioblastoma, a type of high-grade brain tumor; however, its presence in other solid tumors is not well characterized. Upon reviewing 4331 solid tumor cases tested via the 610-gene sequencing platform, EGFRvIII was identified in 17 cases, including 16 brain tumors and one breast tumor. EGFRvIII-positive brain tumors were all glioblastoma with wild-type IDH1/2 status, most with EGFR amplification and EGFR mutation. The only EGFRvIII-positive breast lesion was in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient. Both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy. Abstract
Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2–7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy
Current Methods for Hyperpolarized [1-13C]pyruvate MRI Human Studies
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can
measure processes such as localized metabolism that is altered in numerous
cancers, liver, heart, kidney diseases, and more. It has been translated into
human studies during the past 10 years, with recent rapid growth in studies
largely based on increasing availability of hyperpolarized agent preparation
methods suitable for use in humans. This paper aims to capture the current
successful practices for HP MRI human studies with [1-13C]pyruvate - by far the
most commonly used agent, which sits at a key metabolic junction in glycolysis.
The paper is divided into four major topic areas: (1) HP 13C-pyruvate
preparation, (2) MRI system setup and calibrations, (3) data acquisition and
image reconstruction, and (4) data analysis and quantification. In each area,
we identified the key components for a successful study, summarized both
published studies and current practices, and discuss evidence gaps, strengths,
and limitations. This paper is the output of the HP 13C MRI Consensus Group as
well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods &
Equipment study groups. It further aims to provide a comprehensive reference
for future consensus building as the field continues to advance human studies
with this metabolic imaging modality
Intragenic EGFR::EGFRE1E8 Fusion (EGFRvIII) in 4331 Solid Tumors
Epidermal growth factor receptor variant III (EGFRvIII, the deletion of exons 2-7) is a recurrent intragenic EGFR::EGFR.E1E8 fusion that occurs in high-grade gliomas. The presence of EGFRvIII in other solid tumors has not been well characterized. We retrospectively reviewed advanced malignant solid tumor cases tested by a custom hybrid capture 610-gene next-generation sequencing platform from 2021 to 2022. EGFRvIII was identified in 17 of 4331 (0.4%) cases, including 16 of 238 (7%) brain tumors and 1/301 (0.3%) breast tumors. EGFRvIII-positive brain tumors were all glioblastoma IDH-wildtype, most with concurrent TERT promoter mutation (14 of 16), EGFR amplification (13 of 16), and EGFR mutation (8 of 16). The only EGFRvIII-positive breast lesion was a sarcomatoid neoplasm in a young female patient. A separate breast case tested outside our institution with reported EGFRvIII was noted in a young female patient with a malignant phyllodes tumor with stromal overgrowth. Microscopically, both EGFRvIII-positive breast tumors showed high-grade sarcomatoid morphology with brisk mitotic activity. In summary, EGFRvIII is rare, occurring primarily in glioblastoma and rarely in breast sarcomatoid neoplasm, with no instances identified in other tumor types in our series. This select group of patients may benefit from chemotherapy and/or targeted anti-EGFR therapy
Brief Report: Clinical Response, Toxicity, and Resistance Mechanisms to Osimertinib Plus MET Inhibitors in Patients With EGFR-Mutant MET-Amplified NSCLC
INTRODUCTION:MET amplification is a known resistance mechanism to EGFR tyrosine kinase inhibitor (TKI) treatment in EGFR-mutant NSCLC. Dual EGFR-MET inhibition has been reported with success in overcoming such resistance and inducing clinical benefit. Resistance mechanisms to dual EGFR-MET inhibition require further investigation and characterization.
METHODS: Patients with NSCLC with both MET amplification and EGFR mutation who have received crizotinib, capmatinib, savolitinib, or tepotinib plus osimertinib (OSI) after progression on OSI at MD Anderson Cancer Center were included in this study. Molecular profiling was completed by means of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS). Radiological response was assessed on the basis of Response Evaluation Criteria in Solid Tumors version 1.1.
RESULTS: From March 2016 to March 2022, 23 treatments with dual MET inhibitor and osi were identified with a total of 20 patients included. Three patients received capmatinib plus OSI after progression on crizotinib plus OSI. Median age was 64 (38–89) years old and 75% were female. MET amplification was detected by FISH in 14 patients in the tissue, NGS in 10 patients, and circulating tumor DNA in three patients. Median MET gene copy number was 13.6 (6.4–20). Overall response rate was 34.8% (eight of 23). In assessable patients, tumor shrinkage was observed in 82.4% (14 of 17). Median time on treatment was 27 months. Two of three patients responded to capmatinib plus OSI after progression on crizotinib plus OSI. Dual EGFR-MET inhibition was overall well tolerated. Two patients on crizotinib plus OSI and one pt on capmatinib plus OSI discontinued therapy due to pneumonitis. One pt discontinued crizotinib plus OSI due to gastrointestinal toxicity. Six patients were still on double TKI treatment. At disease progression to dual EGFR-MET inhibition, FISH and NGS on tumor and plasma were completed in six patients. Notable resistance mechanisms observed include acquired MET D1246H (n = 1), acquired EGFR C797S (n = 2), FGFR2 fusion (n = 1, concurrent with C797S), and EGFR G796S (n = 1, concurrent with C797S). Four patients lost MET amplification.
CONCLUSIONS: Dual EGFR and MET inhibition yielded high clinical response rate after progression on OSI. Resistance mechanisms to EGFR-MET double TKI inhibition include MET secondary mutation, EGFR secondary mutation, or loss of MET amplification
Efficacy and Clinicogenomic Correlates of Response to Immune Checkpoint Inhibitors Alone or With Chemotherapy in Non-Small Cell Lung Cancer
The role of combination chemotherapy with immune checkpoint inhibitors (ICI) (ICI-chemo) over ICI monotherapy (ICI-mono) in non-small cell lung cancer (NSCLC) remains underexplored. In this retrospective study of 1133 NSCLC patients, treatment with ICI-mono vs ICI-chemo associate with higher rates of early progression, but similar long-term progression-free and overall survival. Sequential vs concurrent ICI and chemotherapy have similar long-term survival, suggesting no synergism from combination therapy. Integrative modeling identified PD-L1, disease burden (Stage IVb; liver metastases), and STK11 and JAK2 alterations as features associate with a higher likelihood of early progression on ICI-mono. CDKN2A alterations associate with worse long-term outcomes in ICI-chemo patients. These results are validated in independent external (n = 89) and internal (n = 393) cohorts. This real-world study suggests that ICI-chemo may protect against early progression but does not influence overall survival, and nominates features that identify those patients at risk for early progression who may maximally benefit from ICI-chemo
- …
