2,022 research outputs found

    Clinical and service implications of a cognitive analytic therapy model of psychosis

    Get PDF
    Cognitive analytic therapy (CAT) is an integrative, interpersonal model of therapy predicated on a radically social concept of self, developed over recent years in the UK by Anthony Ryle. A CAT-based model of psychotic disorder has been developed much more recently based on encouraging early experience in this area. The model describes and accounts for many psychotic experiences and symptoms in terms of distorted, amplified or muddled enactments of normal or ‘neurotic’ reciprocal role procedures (RRPs) and of damage at a meta-procedural level to the structures of the self. Reciprocal role procedures are understood in CAT to represent the outcome of the process of internalization of early, sign-mediated, interpersonal experience and to constitute the basis for all mental activity, normal or otherwise. Enactments of maladaptive RRPs generated by early interpersonal stress are seen in this model to constitute a form of ‘internal expressed emotion’. Joint description of these RRPs and their enactments (both internally and externally) and their subsequent revision is central to the practice of CAT during which they are mapped out through written and diagrammatic reformulations. This model may usefully complement and extend existing approaches, notably recent CBT-based interventions, particularly with ‘difficult’ patients, and generate meaningful and helpful understandings of these disorders for both patients and their treating teams. We suggest that use of a coherent and robust model such as CAT could have important clinical and service implications in terms of developing and researching models of these disorders as well as for the training of multidisciplinary teams in their effective treatment

    Correlated X-ray and Optical Variability in Mkn 509

    Full text link
    We present results of a 3 year monitoring campaign of the Seyfert 1 galaxy Markarian 509, using X-ray data from the Rossi X-ray Timing Explorer (RXTE) and optical data taken by the SMARTS consortium. Both light curves show significant variations, and are strongly correlated with the optical flux leading the X-ray flux by 15 days. The X-ray power spectrum shows a steep high-frequency slope of -2.0, breaking to a slope of -1.0 at at timescale of 34 days. The lag from optical to X-ray emission is most likely caused by variations in the accretion disk propagating inward.Comment: 13 pages, 3 figures. Accepted for publication in the Astrophysical Journa

    Is attending a mental process?

    Get PDF
    The nature of attention has been the topic of a lively research programme in psychology for over a century. But there is widespread agreement that none of the theories on offer manage to fully capture the nature of attention. Recently, philosophers have become interested in the debate again after a prolonged period of neglect. This paper contributes to the project of explaining the nature of attention. It starts off by critically examining Christopher Mole’s prominent “adverbial” account of attention, which traces the failure of extant psychological theories to their assumption that attending is a kind of process. It then defends an alternative, process-based view of the metaphysics of attention, on which attention is understood as an activity and not, as psychologists seem to implicitly assume, an accomplishment. The entrenched distinction between accomplishments and activities is shown to shed new light on the metaphysics of attention. It also provides a novel diagnosis of the empirical state of play

    Compressed sensing imaging techniques for radio interferometry

    Get PDF
    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave background radiation, of particular interest for cosmology.Comment: 10 pages, 1 figure. Version 2 matches version accepted for publication in MNRAS. Changes includes: writing corrections, clarifications of arguments, figure update, and a new subsection 4.1 commenting on the exact compliance of radio interferometric measurements with compressed sensin

    The 74MHz System on the Very Large Array

    Full text link
    The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather'', an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ

    Resolving the Radio Source Background: Deeper Understanding Through Confusion

    Full text link
    We used the Karl G. Jansky Very Large Array (VLA) to image one primary beam area at 3 GHz with 8 arcsec FWHM resolution and 1.0 microJy/beam rms noise near the pointing center. The P(D) distribution from the central 10 arcmin of this confusion-limited image constrains the count of discrete sources in the 1 < S(microJy/beam) < 10 range. At this level the brightness-weighted differential count S^2 n(S) is converging rapidly, as predicted by evolutionary models in which the faintest radio sources are star-forming galaxies; and ~96$% of the background originating in galaxies has been resolved into discrete sources. About 63% of the radio background is produced by AGNs, and the remaining 37% comes from star-forming galaxies that obey the far-infrared (FIR) / radio correlation and account for most of the FIR background at lambda = 160 microns. Our new data confirm that radio sources powered by AGNs and star formation evolve at about the same rate, a result consistent with AGN feedback and the rough correlation of black hole and bulge stellar masses. The confusion at centimeter wavelengths is low enough that neither the planned SKA nor its pathfinder ASKAP EMU survey should be confusion limited, and the ultimate source detection limit imposed by "natural" confusion is < 0.01 microJy at 1.4 GHz. If discrete sources dominate the bright extragalactic background reported by ARCADE2 at 3.3 GHz, they cannot be located in or near galaxies and most are < 0.03 microJy at 1.4 GHz.Comment: 28 pages including 16 figures. ApJ accepted for publicatio

    Scattering in the vicinity of relativistic jets: a method for constraining jet parameters

    Full text link
    Relativistic jets of radio loud active galactic nuclei (AGN) produce highly directed, intense beams of radiation. A fraction of this beamed radiation scatters on the thermal plasma generally surrounding an AGN. The morphology of the scattered emission can thus provide constraints on the physical properties of the jet. We present a model to study the feasibility of constraining the parameters of a jet, especially its inclination angle and bulk Lorentz factor in this way. We apply our model to the well studied jet of M87 and the surrounding diffuse gas and find that the observational limits of the surface brightness measured in the region of the putative counterjet provide the tightest constraints on the jet parameters consistent with constraints derived by other methods. We briefly discuss the applicability of our model to other sources exhibiting relativistic motionsComment: 17 pages, 15 figures, to appear in A&A, 420, 33 (2004

    Nuclear de-excitation line spectrum of Cassiopeia A

    Full text link
    The supernova remnant Cassiopeia A is a prime candidate for accelerating cosmic ray protons and ions. Gamma rays have been observed at GeV and TeV energies, which indicates hadronic interactions, but they could also be caused by inverse-Compton scattering of low-energy photons by accelerated electrons. We seek to predict the flux of nuclear de-excitation lines from Cas A through lower-energy cosmic rays and to compare it with COMPTEL measurements. Assuming a hadronic origin of the high-energy emission, we extrapolate the cosmic ray spectrum down to energies of 10 MeV, taking into account an equilibrium power-law momentum spectrum with a constant slope. We then calculate the nuclear line spectrum of Cassiopeia A, considering the most prominent chemical elements in the MeV band and their abundances as determined by X-ray spectroscopy. We show that the predicted line spectrum is close to the level of the COMPTEL sensitivity and agrees with conservative upper limits.Comment: 4 pages, 1 figure, accepted for publication by A&

    A Brief History of AGN

    Get PDF
    Astronomers knew early in the twentieth century that some galaxies have emission-line nuclei. However, even the systematic study by Seyfert (1943) was not enough to launch active galactic nuclei (AGN) as a major topic of astronomy. The advances in radio astronomy in the 1950s revealed a new universe of energetic phenomena, and inevitably led to the discovery of quasars. These discoveries demanded the attention of observers and theorists, and AGN have been a subject of intense effort ever since. Only a year after the recognition of the redshifts of 3C 273 and 3C 48 in 1963, the idea of energy production by accretion onto a black hole was advanced. However, acceptance of this idea came slowly, encouraged by the discovery of black hole X-ray sources in our Galaxy and, more recently, supermassive black holes in the center of the Milky Way and other galaxies. Many questions remain as to the formation and fueling of the hole, the geometry of the central regions, the detailed emission mechanisms, the production of jets, and other aspects. The study of AGN will remain a vigorous part of astronomy for the foreseeable future.Comment: 37 pages, no figures. Uses aaspp4.sty. To be published in Publications of the Astronomical Society of the Pacific, 1999 Jun

    Star-galaxy separation in the AKARI NEP Deep Field

    Get PDF
    Context: It is crucial to develop a method for classifying objects detected in deep surveys at infrared wavelengths. We specifically need a method to separate galaxies from stars using only the infrared information to study the properties of galaxies, e.g., to estimate the angular correlation function, without introducing any additional bias. Aims. We aim to separate stars and galaxies in the data from the AKARI North Ecliptic Pole (NEP) Deep survey collected in nine AKARI / IRC bands from 2 to 24 {\mu}m that cover the near- and mid-infrared wavelengths (hereafter NIR and MIR). We plan to estimate the correlation function for NIR and MIR galaxies from a sample selected according to our criteria in future research. Methods: We used support vector machines (SVM) to study the distribution of stars and galaxies in the AKARIs multicolor space. We defined the training samples of these objects by calculating their infrared stellarity parameter (sgc). We created the most efficient classifier and then tested it on the whole sample. We confirmed the developed separation with auxiliary optical data obtained by the Subaru telescope and by creating Euclidean normalized number count plots. Results: We obtain a 90% accuracy in pinpointing galaxies and 98% accuracy for stars in infrared multicolor space with the infrared SVM classifier. The source counts and comparison with the optical data (with a consistency of 65% for selecting stars and 96% for galaxies) confirm that our star/galaxy separation methods are reliable. Conclusions: The infrared classifier derived with the SVM method based on infrared sgc- selected training samples proves to be very efficient and accurate in selecting stars and galaxies in deep surveys at infrared wavelengths carried out without any previous target object selection.Comment: 8 pages, 8 figure
    corecore