1,875 research outputs found
Photoemission Spectra from Reduced Density Matrices: the Band Gap in Strongly Correlated Systems
We present a method for the calculation of photoemission spectra in terms of
reduced density matrices. We start from the spectral representation of the
one-body Green's function G, whose imaginary part is related to photoemission
spectra, and we introduce a frequency-dependent effective energy that accounts
for all the poles of G. Simple approximations to this effective energy give
accurate spectra in model systems in the weak as well as strong correlation
regime. In real systems reduced density matrices can be obtained from reduced
density-matrix functional theory. Here we use this approach to calculate the
photoemission spectrum of bulk NiO: our method yields a qualitatively correct
picture both in the antiferromagnetic and paramagnetic phases, contrary to
mean-field methods, in which the paramagnet is a metal
Reduced Density-Matrix Functional Theory: correlation and spectroscopy
In this work we explore the performance of approximations to electron
correlation in reduced density-matrix functional theory (RDMFT) and of
approximations to the observables calculated within this theory. Our analysis
focuses on the calculation of total energies, occupation numbers,
removal/addition energies, and spectral functions. We use the exactly solvable
Hubbard molecule at 1/4 and 1/2 filling as test systems. This allows us to
analyze the underlying physics and to elucidate the origin of the observed
trends. For comparison we also report the results of the approximation,
where the self-energy functional is approximated, but no further hypothesis are
made concerning the approximations of the observables. In particular we focus
on the atomic limit, where the two sites of the molecule are pulled apart and
electrons localize on either site with equal probability, unless a small
perturbation is present: this is the regime of strong electron correlation. In
this limit, using the Hubbard molecule at 1/2 filling with or without a
spin-symmetry-broken ground state, allows us to explore how degeneracies and
spin-symmetry breaking are treated in RDMFT. We find that, within the used
approximations, neither in RDMFT nor in the signature of strong
correlation are present in the spin-singlet ground state, whereas both give the
exact result for the spin-symmetry broken case. Moreover we show how the
spectroscopic properties change from one spin structure to the other. Our
findings can be generalized to other situations, which allows us to make
connections to real materials and experiment
Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum
Measurements of small-scale turbulence made over the complex-terrain
atmospheric boundary layer during the MATERHORN Program are used to describe
the structure of turbulence in katabatic flows. Turbulent and mean
meteorological data were continuously measured at multiple levels at four
towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The
multi-level observations made during a 30-day long MATERHORN-Fall field
campaign in September-October 2012 allowed studying of temporal and spatial
structure of katabatic flows in detail, and herein we report turbulence and
their variations in katabatic winds. Observed vertical profiles show steep
gradients near the surface, but in the layer above the slope jet the vertical
variability is smaller. It is found that the vertical (normal to the slope)
momentum flux and horizontal (along the slope) heat flux in a slope-following
coordinate system change their sign below and above the wind maximum of a
katabatic flow. The vertical momentum flux is directed downward (upward)
whereas the horizontal heat flux is downslope (upslope) below (above) the wind
maximum. Our study therefore suggests that the position of the jet-speed
maximum can be obtained by linear interpolation between positive and negative
values of the momentum flux (or the horizontal heat flux) to derive the height
where flux becomes zero. It is shown that the standard deviations of all wind
speed components (therefore the turbulent kinetic energy) and the dissipation
rate of turbulent kinetic energy have a local minimum, whereas the standard
deviation of air temperature has an absolute maximum at the height of
wind-speed maximum. We report several cases where the vertical and horizontal
heat fluxes are compensated. Turbulence above the wind-speed maximum is
decoupled from the surface, and follows the classical local z-less predictions
for stably stratified boundary layer.Comment: Manuscript submitted to Boundary-Layer Meteorology (05 December 2014
Reliability of third-order moment parameterization for models of turbulent boundary layer over gentle topography
An analysis is made of the transport equation of Reynolds shear stress, written in a streamline coordinate system, starting from the fields of first- and secondorder
moments of wind velocity, measured in a terrain-following system over gentle topography, in order to verify the usual parameterizations of third-order moments. The equation is split into two parts: the first contains the terms which can be calculated directly from measurements, the second involves the pressure-velocity correlation considering the terms of rapid distortion, curvature and return to isotropy and the transport of triple velocity-correlation modelled assuming a flux-gradient approximation. Moreover, the error estimates associated with both parts have been computed
using a Monte Carlo technique which takes into account the experimental errors. This analysis is performed on wind tunnel data over a gently shaped two-dimensional valley
and hill. The comparison between the measured and modelled parts is good near the surface, whereas, at higher levels, where the pertubations induced by the topography are significant, there are large zones generally characterized by streamlines with concave curvature in which the
flux-gradient approximation used to compute the triple
product correlation cannot be applied
Ultrasound in the diagnosis of calcium pyrophosphate dihydrate deposition disease. A systematic literature review and a meta-analysis
..
How does water current velocity affect invertebrate community and leaf-litter breakdown in a physicochemically stable freshwater ecosystem? An experimental study in two nearby reaches (erosional vs. depositional) of the Vera Spring (Central Italy)
The decomposition of allochthonous dead organic matter is a key process for the
metabolism and functioning of stream and spring ecosystems. The litter breakdown
process is influenced by several abiotic and biotic factors. Among abiotic parameters,
the role of current velocity and physical abrasion was poorly investigated. Field studies
gave contrasting results, mainly because of the covariation and the interaction of
current velocity with other biotic/abiotic variables. For these reasons, we assessed
leaf-litter breakdown and the structure of crenic assemblages in two nearby reaches
(erosional vs. depositional) of a physicochemically stable rheocrene spring. The two
zones investigated were characterized by similar environmental conditions, but water
current velocity was about four times greater in the erosional reach. We found substantial
differences in the structure and functional organization of crenic assemblages.
Overall taxa richness and density were higher in the depositional reach, while
diversity and abundance of Ephemeroptera, Plecoptera and Trichoptera were taller in
the erosional zone. Shredders were more abundant in the erosional zone, and
scrapers were more represented in the slow current sector of the spring. We also
demonstrated that water flow may promote a faster decomposition of leaf detritus in
the spring erosional reach mainly through indirect effects: higher richness and abundance
of shredder detritivores. Our results indicate that water current velocity may
have a key role in affecting both spring assemblage composition and ecosystem
processes
The incremental role of trait emotional intelligence on perceived cervical screening barriers
Researchers have become increasingly interested in investigating the role of the psychological aspects related to the perception of cervical screening barriers. This study investigates the influence of trait EI on perceived cervical screening barriers. Furthermore, this study investigates the incremental validity of trait EI beyond the Big Five, as well as emotion regulation in the perceived barrier towards the Pap test as revealed in a sample of 206 Italian women that were undergoing cervical screening. Results have shown that trait EI is negatively related to cervical screening barriers. Furthermore, trait EI can be considered as a strong incremental predictor of a woman's perception of screening over and above the Big Five, emotion regulation, age, sexual intercourse experience and past Pap test. Detailed information on the study findings and future research directions are discussed
- …
