424 research outputs found
Light scattering and optical diffusion from willemite spherulites
Willemite is a zinc silicate mineral used in modern day pottery as a decorative feature within glazes. It is produced by controlled heat treatment of zinc oxide-containing ceramic glazes. The heat-treated glazes devitrify, producing thin nanoscale needle-like willemite crystals growing in spherulitic morphologies through branching of the needles. We show here that this resulting morphology of willemite crystals in an inorganic glass matrix has a previously unreported strong interaction with light, displaying remarkable optical diffraction patterns. Thin sections of such spherulites act as optical diffusers, enabling light beams to be spread up to 160° in width. Analysis of the interaction between the willemite spherulites and light suggests that the high density of willemite crystals in the spherulites and the length scales associated with both the thickness of the needles and the spacings between branches are together responsible for this optical diffusion behaviour.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.optmat.2015.12.02
Recommended from our members
User dependent cryptography for security in future mobile telecommunication systems
In this paper we propose a user dependent scheme for enhancing security of the transmitted content in the future telecommunication systems. In order to achieve a higher level of security we introduce a scheme where the user identity gets involved in the encryption/decryption processes using an additional component for the block cipher which represents the user’s behavioural model. Applying such a scheme, in addition to introducing more difficulties to an attacker due to the user dependency of the cipher algorithm, gives the mobile operator the opportunity to ensure that a licensed service has not been shared by the customer. To show the feasibility of our approach we use the concept of invertible Boolean functions as an example
Comment on ``Solidification of a Supercooled Liquid in a Narrow Channel''
Comment on PRL v. 86, p. 5084 (2001) [cond-mat/0101016]. We point out that
the authors' simulations are consistent with the known theory of steady-state
solutions in this system
C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion.
Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR
Pressure dependent electronic properties of MgO polymorphs: A first-principles study of Compton profiles and autocorrelation functions
The first-principles periodic linear combination of atomic orbitals method
within the framework of density functional theory implemented in the CRYSTAL06
code has been applied to explore effect of pressure on the Compton profiles and
autocorrelation functions of MgO. Calculations are performed for the B1, B2,
B3, B4, B8_1 and h-MgO polymorphs of MgO to compute lattice constants and bulk
moduli. The isothermal enthalpy calculations predict that B4 to B8_1, h-MgO to
B8_1, B3 to B2, B4 to B2 and h-MgO to B2 transitions take place at 2, 9, 37, 42
and 64 GPa respectively. The high pressure transitions B8_1 to B2 and B1 to B2
are found to occur at 340 and 410 GPa respectively. The pressure dependent
changes are observed largely in the valence electrons Compton profiles whereas
core profiles are almost independent of the pressure in all MgO polymorphs.
Increase in pressure results in broadening of the valence Compton profiles. The
principal maxima in the second derivative of Compton profiles shifts towards
high momentum side in all structures. Reorganization of momentum density in the
B1 to B2 structural phase transition is seen in the first and second
derivatives before and after the transition pressure. Features of the
autocorrelation functions shift towards lower r side with increment in
pressure.Comment: 19 pages, 8 figures, accepted for publication in Journal of Materials
Scienc
An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family
A mutant of the high fidelity family-B DNA polymerase from the archaeon Thermococcus gorgonarius (Tgo-Pol), able to replicate past DNA lesions, is described. Gain of function requires replacement of the three amino acid loop region in the fingers domain of Tgo-Pol with a longer version, found naturally in eukaryotic Pol zeta (a family-B translesion synthesis polymerase). Inactivation of the 3'–5' proofreading exonuclease activity is also necessary. The resulting Tgo-Pol Z1 variant is proficient at initiating replication from base mismatches and can read through damaged bases, such as abasic sites and thymine photo-dimers. Tgo-Pol Z1 is also proficient at extending from primers that terminate opposite aberrant bases. The fidelity of Tgo-Pol Z1 is reduced, with amarked tendency tomake changes at G:C base pairs. Together, these results suggest that the loop region of the fingers domain may play a critical role in determining whether a family-B enzyme falls into the accurate genome-replicating category or is an errorprone translesion synthesis polymerase. Tgo-Pol Z1 may also be useful for amplification of damaged DNA
Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces
Using Brownian dynamics, we simulate the fracture of polymer interfaces
reinforced by diblock connector chains. We find that for short chains the
interface fracture toughness depends linearly on the degree of polymerization
of the connector chains, while for longer chains the dependence becomes
. Based on the geometry of initial chain configuration, we propose a
scaling argument that accounts for both short and long chain limits and
crossover between them.Comment: 5 pages, 3 figure
Agegraphic Model based on the Generalized Uncertainty Principle
Many models of dark energy have been proposed to describe the universe since
the beginning of the Big Bang. In this study, we present a new model of
agegraphic dark energy () based on the three generalized uncertainty
principles (Kempf, Mangan, Mann), Nouicer and ( higher orders
generalized uncertainty principle).Using the obtained relations from three of
types of , in the form of three
scenarios(Emergent,Intermediate,Logamediate), we consider three different eras
of the universe evolution. Also we describe the evolution and expansion of the
universe in each subsection. We will plot the obtained relations in these
models for better comparatione.Comment: 23 pages, 28 figures, Accepted for publication in IJGMM
Cell-cycle-dependent transcriptional and translational DNA-damage response of 2 ribonucleotide reductase genes in S. cerevisiae
The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and protein expression or localization in single cells which may be central to function. We overcame these limitations by simultaneous detection of single RNR transcripts and also Rnr proteins in the same individual asynchronous S. cerevisiae cells, with and without DNA damage by methyl methanesulfonate (MMS). Surprisingly, RNR subunit mRNA levels were comparably low in both damaged and undamaged G1 cells and highly induced in damaged S/G2 cells. Transcript numbers became correlated with both protein levels and localization only upon DNA damage in a cell cycle-dependent manner. Further, we showed that the differential RNR response to DNA damage correlated with variable Mec1 kinase activity in the cell cycle in single cells. The transcription of RNR genes was found to be noisy and non-Poissonian in nature. Our results provide vital insight into cell cycle-dependent RNR regulation under conditions of genotoxic stress.Massachusetts Institute of Technology. Center for Environmental Health Sciences (deriving from NIH P30-ES002109)National Institutes of Health (U.S.) (grant R01-CA055042)National Institutes of Health (U.S.) (grant DP1-OD006422)Massachusetts Institute of Technology (CSBi Merck-MIT Fellowship
- …
