2,024 research outputs found
Thermodynamic Geometry of the Born-Infeld-anti-de Sitter black holes
Thermodynamic geometry is applied to the Born-Infeld-anti-de Sitter black
hole (BIAdS) in the four dimensions, which is a nonlinear generalization of the
Reissner-Norstr\"Aom-AdS black hole (RNAdS). We compute the Weinhold as well as
the Ruppeiner scalar curvature and find that the singular points are not the
same with the ones obtained using the heat capacity. Legendre-invariant metric
proposed by Quevedo and the metric obtained by using the free energy as the
thermodynamic potential are obtained and the corresponding scalar curvatures
diverge at the Davies points.Comment: Latex,19 pages,14 figure
Malware Detection using Machine Learning and Deep Learning
Research shows that over the last decade, malware has been growing
exponentially, causing substantial financial losses to various organizations.
Different anti-malware companies have been proposing solutions to defend
attacks from these malware. The velocity, volume, and the complexity of malware
are posing new challenges to the anti-malware community. Current
state-of-the-art research shows that recently, researchers and anti-virus
organizations started applying machine learning and deep learning methods for
malware analysis and detection. We have used opcode frequency as a feature
vector and applied unsupervised learning in addition to supervised learning for
malware classification. The focus of this tutorial is to present our work on
detecting malware with 1) various machine learning algorithms and 2) deep
learning models. Our results show that the Random Forest outperforms Deep
Neural Network with opcode frequency as a feature. Also in feature reduction,
Deep Auto-Encoders are overkill for the dataset, and elementary function like
Variance Threshold perform better than others. In addition to the proposed
methodologies, we will also discuss the additional issues and the unique
challenges in the domain, open research problems, limitations, and future
directions.Comment: 11 Pages and 3 Figure
RANCARancang Bangun Website E-Learning Program Studi Pendidikan Jasmani, Kesehatan dan Rekreasi Jurusan Ilmu Pendidikan FKIP Universitas Palangka Raya
Physical Education and Recreation Study Program is one of Study Programs of Education Stream of Faculty of Teacher and Education of Palangka Raya University. During this time, learning and teaching activity in Physical Education and Recreation Study Program (PJKR) happens with one condition in which there is a meeting between students and lecturer in a class. If the meeting does not happen this means the learning and teaching activity will be interrupted or delayed. To solve the problem of delayed learning and teaching activity, it is needed a certain facility which is available to maximize the learning and teaching process through the development of technology in education area. This is known as website e-learning.
This website was constructed using PHP, database MySQL and also phases of waterfall software development method; Analysis and Definition of Need, System Plan and Software, Implementation and Test of Unit, Integration and Test of System, and Operation and Maintenance.
The result of the blackbox test showed that website e-learning PJKR Program Study could manage feature of e-learning which were lecture materials and assignments or quizes. This e-learning ran well accordance with its desig
Phase transition and scaling behavior of topological charged black holes in Horava-Lifshitz gravity
Gravity can be thought as an emergent phenomenon and it has a nice
"thermodynamic" structure. In this context, it is then possible to study the
thermodynamics without knowing the details of the underlying microscopic
degrees of freedom. Here, based on the ordinary thermodynamics, we investigate
the phase transition of the static, spherically symmetric charged black hole
solution with arbitrary scalar curvature in Ho\v{r}ava-Lifshitz gravity at
the Lifshitz point . The analysis is done using the canonical ensemble
frame work; i.e. the charge is kept fixed. We find (a) for both and
, there is no phase transition, (b) while case exhibits the second
order phase transition within the {\it physical region} of the black hole. The
critical point of second order phase transition is obtained by the divergence
of the heat capacity at constant charge. Near the critical point, we find the
various critical exponents. It is also observed that they satisfy the usual
thermodynamic scaling laws.Comment: Minor corrections, refs. added, to appear in Class. Quant. Grav.
arXiv admin note: text overlap with arXiv:1111.0973 by other author
On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes
We study the phase structure and equilibrium state space geometry of
R-charged black holes in , 4 and 7 and the corresponding rotating ,
and branes. For various charge configurations of the compact black
holes in the canonical ensemble we demonstrate new liquid-gas like phase
coexistence behaviour culminating in second order critical points. The critical
exponents turn out to be the same as that of four dimensional asymptotically
AdS black holes in Einstein Maxwell theory. We further establish that the
regions of stability for R-charged black holes are, in some cases, more
constrained than is currently believed, due to properties of some of the
response coefficients. The equilibrium state space scalar curvature is
calculated for various charge configurations, both for the case of compact as
well as flat horizons and its asymptotic behaviour with temperature is
established.Comment: 1 + 33 pages, LaTeX, 25 figures. References adde
On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes
In this paper, we study various aspects of the equilibrium thermodynamic
state space geometry of AdS black holes. We first examine the
Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context,
the state space scalar curvature of these black holes is analysed in various
regions of their thermodynamic parameter space. This provides important new
insights into the structure and significance of the scalar curvature. We
further investigate critical phenomena, and the behaviour of the scalar
curvature near criticality, for KN-AdS black holes in two mixed ensembles,
introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The
critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in
the canonical ensemble. This suggests an universality in the scaling behaviour
near critical points of AdS black holes. Our results further highlight
qualitative differences in the thermodynamic state space geometry for electric
charge and angular momentum fluctuations of these.Comment: 1 + 37 Pages, LaTeX, includes 31 figures. A figure and a
clarification added
Development of siRNA-probes for studying intracellular trafficking of siRNA nanoparticles
One important barrier facing the delivery of short interfering RNAs (siRNAs) via synthetic nanoparticles is the rate of nanoparticle disassembly. However, our ability to optimize the release kinetics of siRNAs from nanoparticles for maximum efficacy is limited by the lack of methods to track their intracellular disassembly. Towards this end, we describe the design of two different siRNA-based fluorescent probes whose fluorescence emission changes in response to the assembly state of the nanoparticle. The first probe design involves a redox-sensitive fluorescence-quenched probe that fluoresces only when the nanoparticle is disassembled in a reductive environment. The second probe design is based on a FRET-labeled siRNA pair that fluoresces due to the proximity of the siRNA pair when the nanoparticle is intact. In both approaches, the delivery vehicle need not be labeled. The utility of these probes was investigated with a lipidoid nanoparticle (LNP) as proof-of-concept in both extracellular and intracellular environments. Fluorescence kinetic data from both probes were fit to a two-phase release and decay curve and subsequently quantified to give intracellular disassembly rate constants. Quantitative analysis revealed that the rate constant of siRNA release measured via the fluorescence-quenched probe was almost identical to the rate constant for nanoparticle disassembly measured via the FRET-labeled probes. Furthermore, these probes were utilized to determine subcellular localization of LNPs with the use of automated high-resolution microscopy as they undergo dissociation. Interestingly, this work shows that large amounts of siRNA remain inside vesicular compartments. Altogether, we have developed new siRNA probes that can be utilized with multiple nanocarriers for quantitative and qualitative analysis of nanoparticle dissociation that may serve as a design tool for future delivery systems.National Institutes of Health (U.S.) (Grant R37-EB000244)National Institutes of Health (U.S.) (Grant R01-CA132091)National Institutes of Health (U.S.) (Grant R01-CA132091)National Institutes of Health (U.S.) (Postdoctoral Fellowship
A Comparative Note on Tunneling in AdS and in its Boundary Matrix Dual
For charged black hole, within the grand canonical ensemble, the decay rate
from thermal AdS to the black hole at a fixed high temperature increases with
the chemical potential. We check that this feature is well captured by a
phenomenological matrix model expected to describe its strongly coupled dual.
This comparison is made by explicitly constructing the kink and bounce
solutions around the de-confinement transition and evaluating the matrix model
effective potential on the solutions.Comment: 1+12 pages, 9 figure
Recommended from our members
Structure-based inhibitors of amyloid beta core suggest a common interface with tau.
Alzheimer's disease (AD) pathology is characterized by plaques of amyloid beta (Aβ) and neurofibrillary tangles of tau. Aβ aggregation is thought to occur at early stages of the disease, and ultimately gives way to the formation of tau tangles which track with cognitive decline in humans. Here, we report the crystal structure of an Aβ core segment determined by MicroED and in it, note characteristics of both fibrillar and oligomeric structure. Using this structure, we designed peptide-based inhibitors that reduce Aβ aggregation and toxicity of already-aggregated species. Unexpectedly, we also found that these inhibitors reduce the efficiency of Aβ-mediated tau aggregation, and moreover reduce aggregation and self-seeding of tau fibrils. The ability of these inhibitors to interfere with both Aβ and tau seeds suggests these fibrils share a common epitope, and supports the hypothesis that cross-seeding is one mechanism by which amyloid is linked to tau aggregation and could promote cognitive decline
- …
