223 research outputs found

    Is toxicity a curse or blessing, or both?—Searching answer from a disease-induced consumer-resource system

    Get PDF
    Chemical toxins exposed in environments and disease outbreaks are global threats to ecosystems in the present era of the anthropocene. Toxin favors disease progression trivially. However, it is still unclear whether the toxin impacts disease elimination too. Toxin also has a significant role in amplifying the risk of disease-induced consumer extinction. Identification of the extinction vortex and its associated precursors are the two most important pillars for understanding the effect of the toxin on the sustainability of ecosystems. On the other hand, the contribution of toxin as a potential agent for stabilizing a disease-induced consumer-resource system is still unclear. Although disease stabilizes the system in absence of toxicity. In order to address this, we consider a mathematical model of disease transmission in the consumer population where both ecological and epidemiological traits are affected by environmental toxins. The proposed model integrates two compartments (susceptible and infected) for consumers and the resource, where the toxin is incorporated in the form of species body burdens. Apart from the formal stability analysis, we extensively use codim-1 and codim-2 bifurcation through MATCONT software for understanding the different dynamical regimes of disease progression and elimination. These derived regimes will be helpful to raise the alarm and take intervention policies

    SMAR1 binds to T(C/G) repeatvand inhibits tumor progression by regulating miR-371-373 cluster

    Get PDF
    Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIPsequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-37

    Sex Hormones and Risk of Lung and Colorectal Cancers in Women: A Mendelian Randomization Study

    Get PDF
    The roles of sex hormones such as estradiol, testosterone, and sex hormone-binding globulin (SHBG) in the etiology of lung and colorectal cancers in women, among the most common cancers after breast cancer, are unclear. This Mendelian randomization (MR) study evaluated such potential causal associations in women of European ancestry. We used summary statistics data from genome-wide association studies on sex hormones and from the Trøndelag Health Study (HUNT) and large consortia on cancers. There was suggestive evidence of 1-standard deviation increase in total testosterone levels being associated with a lower risk of lung non-adenocarcinoma (hazard ratio 0.60, 95% confidence interval 0.37-0.98) in the HUNT Study. However, this was not confirmed by using data from a larger consortium. In general, we did not find convincing evidence to support a causal role of sex hormones on risk of lung and colorectal cancers in women of European ancestry

    Interest and Informational Preferences Regarding Genomic Testing for Modest Increases in Colorectal Cancer Risk

    Get PDF
    Background/Aims: This study explored the interest in genomic testing for modest changes in colorectal cancer risk and preferences for receiving genomic risk communications among individuals with intermediate disease risk due to a family history of colorectal cancer. Methods: Surveys were conducted on 272 men and women at intermediate risk for colorectal cancer enrolled in a randomized trial comparing a remote personalized risk communication intervention (TeleCARE) aimed at promoting colonoscopy to a generic print control condition. Guided by Leventhal’s Common Sense Model of Self-Regulation, we examined demographic and psychosocial factors possibly associated with interest in SNP testing. Descriptive statistics and logistic regression models were used to identify factors associated with interest in SNP testing and preferences for receiving genomic risk communications. Results: Three-fourths of participants expressed interest in SNP testing for colorectal cancer risk. Testing interest did not markedly change across behavior modifier scenarios. Participants preferred to receive genomic risk communications from a variety of sources: printed materials (69.5%), oncologists (54.8%), primary-care physicians (58.4%), and the web (58.1%). Overall, persons who were unmarried (p = 0.029), younger (p = 0.003) and with greater cancer-related fear (p = 0.019) were more likely to express interest in predictive genomic testing for colorectal cancer risk. In a stratified analysis, cancer-related fear was associated with the interest in predictive genomic testing in the intervention group (p = 0.017), but not the control group. Conclusions: Individuals with intermediate familial risk for colorectal cancer are highly interested in genomic testing for modest increases in disease risk, specifically unmarried persons, younger age groups and those with greater cancer fear

    Prospective and Mendelian randomization analyses on the association of circulating fatty acid binding protein 4 (FABP-4) and risk of colorectal cancer.

    Get PDF
    BACKGROUND: Fatty acid binding protein 4 (FABP-4) is a lipid-binding adipokine upregulated in obesity, which may facilitate fatty acid supply for tumor growth and promote insulin resistance and inflammation and may thus play a role in colorectal cancer (CRC) development. We aimed to investigate the association between circulating FABP-4 and CRC and to assess potential causality using a Mendelian randomization (MR) approach. METHODS: The association between pre-diagnostic plasma measurements of FABP-4 and CRC risk was investigated in a nested case-control study in 1324 CRC cases and the same number of matched controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A two-sample Mendelian randomization study was conducted based on three genetic variants (1 cis, 2 trans) associated with circulating FABP-4 identified in a published genome-wide association study (discovery n = 20,436) and data from 58,131 CRC cases and 67,347 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. RESULTS: In conditional logistic regression models adjusted for potential confounders including body size, the estimated relative risk, RR (95% confidence interval, CI) per one standard deviation, SD (8.9 ng/mL) higher FABP-4 concentration was 1.01 (0.92, 1.12) overall, 0.95 (0.80, 1.13) in men and 1.09 (0.95, 1.25) in women. Genetically determined higher FABP-4 was not associated with colorectal cancer risk (RR per FABP-4 SD was 1.10 (0.95, 1.27) overall, 1.03 (0.84, 1.26) in men and 1.21 (0.98, 1.48) in women). However, in a cis-MR approach, a statistically significant association was observed in women (RR 1.56, 1.09, 2.23) but not overall (RR 1.23, 0.97, 1.57) or in men (0.99, 0.71, 1.37). CONCLUSIONS: Taken together, these analyses provide no support for a causal role of circulating FABP-4 in the development of CRC, although the cis-MR provides some evidence for a positive association in women, which may deserve to be investigated further.fals

    Prospective and Mendelian randomization analyses on the association of circulating fatty acid binding protein 4 (FABP-4) and risk of colorectal cancer

    Get PDF
    BACKGROUND: Fatty acid binding protein 4 (FABP-4) is a lipid-binding adipokine upregulated in obesity, which may facilitate fatty acid supply for tumor growth and promote insulin resistance and inflammation and may thus play a role in colorectal cancer (CRC) development. We aimed to investigate the association between circulating FABP-4 and CRC and to assess potential causality using a Mendelian randomization (MR) approach. METHODS: The association between pre-diagnostic plasma measurements of FABP-4 and CRC risk was investigated in a nested case-control study in 1324 CRC cases and the same number of matched controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A two-sample Mendelian randomization study was conducted based on three genetic variants (1 cis, 2 trans) associated with circulating FABP-4 identified in a published genome-wide association study (discovery n = 20,436) and data from 58,131 CRC cases and 67,347 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. RESULTS: In conditional logistic regression models adjusted for potential confounders including body size, the estimated relative risk, RR (95% confidence interval, CI) per one standard deviation, SD (8.9 ng/mL) higher FABP-4 concentration was 1.01 (0.92, 1.12) overall, 0.95 (0.80, 1.13) in men and 1.09 (0.95, 1.25) in women. Genetically determined higher FABP-4 was not associated with colorectal cancer risk (RR per FABP-4 SD was 1.10 (0.95, 1.27) overall, 1.03 (0.84, 1.26) in men and 1.21 (0.98, 1.48) in women). However, in a cis-MR approach, a statistically significant association was observed in women (RR 1.56, 1.09, 2.23) but not overall (RR 1.23, 0.97, 1.57) or in men (0.99, 0.71, 1.37). CONCLUSIONS: Taken together, these analyses provide no support for a causal role of circulating FABP-4 in the development of CRC, although the cis-MR provides some evidence for a positive association in women, which may deserve to be investigated further

    Pathway polygenic risk scores (pPRS) for the analysis of gene-environment interaction

    Full text link
    A polygenic risk score (PRS) is used to quantify the combined disease risk of many genetic variants. For complex human traits there is interest in determining whether the PRS modifies, i.e. interacts with, important environmental (E) risk factors. Detection of a PRS by environment (PRS x E) interaction may provide clues to underlying biology and can be useful in developing targeted prevention strategies for modifiable risk factors. The standard PRS may include a subset of variants that interact with E but a much larger subset of variants that affect disease without regard to E. This latter subset will dilute the underlying signal in former subset, leading to reduced power to detect PRS x E interaction. We explore the use of pathway-defined PRS (pPRS) scores, using state of the art tools to annotate subsets of variants to genomic pathways. We demonstrate via simulation that testing targeted pPRS x E interaction can yield substantially greater power than testing overall PRS x E interaction. We also analyze a large study (N = 78,253) of colorectal cancer (CRC) where E = non-steroidal anti-inflammatory drugs (NSAIDs), a well-established protective exposure. While no evidence of overall PRS x NSAIDs interaction (p = 0.41) is observed, a significant pPRS x NSAIDs interaction (p = 0.0003) is identified based on SNPs within the TGF-β/ gonadotropin releasing hormone receptor (GRHR) pathway. NSAIDS is protective (OR=0.84) for those at the 5th percentile of the TGF-β/GRHR pPRS (low genetic risk, OR), but significantly more protective (OR=0.70) for those at the 95th percentile (high genetic risk). From a biological perspective, this suggests that NSAIDs may act to reduce CRC risk specifically through genes in these pathways. From a population health perspective, our result suggests that focusing on genes within these pathways may be effective at identifying those for whom NSAIDs-based CRC-prevention efforts may be most effective

    A simplified multi-criteria evaluation model for landfill site ranking and selection based on AHP and GIS

    Get PDF
    This study used GIS based Multi-criteria Decision Analysis (MCDA) approach for evaluating the most environmentally suitable landfill sites in the study area. The weights of relative importance of the factors guiding landfill siting were estimated using pair-wise comparisons in AHP. The maps showing suitable landfill sites were generated applying a weighted linear combination (WLC) in GIS using a comparison matrix to aggregate different significant scenarios associated with environmental and economic objectives. To determine the appropriate areas where landfill sites can be located, thematic maps for all the criteria were generated using GIS. A final map was produced showing suitability for the location of the landfill sites. The suitable sites having an area equal to or above 4 ha at one place and 90% of which is barren land were considered suitable for landfill. The selected candidate sites were ranked to get the most desirable sites for landfill

    Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia

    Get PDF
    The Indo-Gangetic aquifer is one of the world’s most important transboundary water resources, and the most heavily exploited aquifer in the world. To better understand the aquifer system, typologies have been characterized for the aquifer, which integrate existing datasets across the Indo-Gangetic catchment basin at a transboundary scale for the first time, and provide an alternative conceptualization of this aquifer system. Traditionally considered and mapped as a single homogenous aquifer of comparable aquifer properties and groundwater resource at a transboundary scale, the typologies illuminate significant spatial differences in recharge, permeability, storage, and groundwater chemistry across the aquifer system at this transboundary scale. These changes are shown to be systematic, concurrent with large-scale changes in sedimentology of the Pleistocene and Holocene alluvial aquifer, climate, and recent irrigation practices. Seven typologies of the aquifer are presented, each having a distinct set of challenges and opportunities for groundwater development and a different resilience to abstraction and climate change. The seven typologies are: (1) the piedmont margin, (2) the Upper Indus and Upper-Mid Ganges, (3) the Lower Ganges and Mid Brahmaputra, (4) the fluvially influenced deltaic area of the Bengal Basin, (5) the Middle Indus and Upper Ganges, (6) the Lower Indus, and (7) the marine-influenced deltaic areas

    Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in <it>Medicago truncatula</it>.</p> <p>Results</p> <p>This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in <it>M. truncatula</it>. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene.</p> <p>Conclusions</p> <p>This study shows that <it>Medicago truncatula </it>contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.</p
    corecore