1,059 research outputs found
A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations
We consider boundary value problems of the first and third kind for the
diffusionwave equation. By using the method of energy inequalities, we find a
priori estimates for the solutions of these boundary value problems.Comment: 10 pages, no figur
Stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index
We consider a mixed stochastic differential equation driven by possibly
dependent fractional Brownian motion and Brownian motion. Under mild regularity
assumptions on the coefficients, it is proved that the equation has a unique
solution
Fractional Fokker-Planck Equation for Fractal Media
We consider the fractional generalizations of equation that defines the
medium mass. We prove that the fractional integrals can be used to describe the
media with noninteger mass dimensions. Using fractional integrals, we derive
the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski
equation). In this paper fractional Fokker-Planck equation for fractal media is
derived from the fractional Chapman-Kolmogorov equation. Using the Fourier
transform, we get the Fokker-Planck-Zaslavsky equations that have fractional
coordinate derivatives. The Fokker-Planck equation for the fractal media is an
equation with fractional derivatives in the dual space.Comment: 17 page
Self-consistent theory of turbulence
A new approach to the stochastic theory of turbulence is suggested. The
coloured noise that is present in the stochastic Navier-Stokes equation is
generated from the delta-correlated noise allowing us to avoid the nonlocal
field theory as it is the case in the conventional theory. A feed-back
mechanism is introduced in order to control the noise intensity.Comment: submitted to J.Tech. Phys.Letters (St. Petersburg
Stationary states for underdamped anharmonic oscillators driven by Cauchy noise
Using methods of stochastic dynamics, we have studied stationary states in
the underdamped anharmonic stochastic oscillators driven by Cauchy noise. Shape
of stationary states depend both on the potential type and the damping. If the
damping is strong enough, for potential wells which in the overdamped regime
produce multimodal stationary states, stationary states in the underdamped
regime can be multimodal with the same number of modes like in the overdamped
regime. For the parabolic potential, the stationary density is always unimodal
and it is given by the two dimensional -stable density. For the mixture
of quartic and parabolic single-well potentials the stationary density can be
bimodal. Nevertheless, the parabolic addition, which is strong enough, can
destroy bimodlity of the stationary state.Comment: 9 page
Electromagnetic field of fractal distribution of charged particles
Electric and magnetic fields of fractal distribution of charged particles are
considered. The fractional integrals are used to describe fractal distribution.
The fractional integrals are considered as approximations of integrals on
fractals. Using the fractional generalization of integral Maxwell equation, the
simple examples of the fields of homogeneous fractal distribution are
considered. The electric dipole and quadrupole moments for fractal distribution
are derived.Comment: RevTex, 21 pages, 2 picture
Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations
We introduce new fractional operators of variable order on isolated time
scales with Mittag-Leffler kernels. This allows a general formulation of a
class of fractional variational problems involving variable-order difference
operators. Main results give fractional integration by parts formulas and
necessary optimality conditions of Euler-Lagrange type.Comment: This is a preprint of a paper whose final and definite form is with
Springe
Fractional Loop Group and Twisted K-Theory
We study the structure of abelian extensions of the group of
-differentiable loops (in the Sobolev sense), generalizing from the case of
central extension of the smooth loop group. This is motivated by the aim of
understanding the problems with current algebras in higher dimensions. Highest
weight modules are constructed for the Lie algebra. The construction is
extended to the current algebra of supersymmetric Wess-Zumino-Witten model. An
application to the twisted K-theory on is discussed.Comment: Final version in Commun. Math. Phy
Weyl Quantization of Fractional Derivatives
The quantum analogs of the derivatives with respect to coordinates q_k and
momenta p_k are commutators with operators P_k and $Q_k. We consider quantum
analogs of fractional Riemann-Liouville and Liouville derivatives. To obtain
the quantum analogs of fractional Riemann-Liouville derivatives, which are
defined on a finite interval of the real axis, we use a representation of these
derivatives for analytic functions. To define a quantum analog of the
fractional Liouville derivative, which is defined on the real axis, we can use
the representation of the Weyl quantization by the Fourier transformation.Comment: 9 pages, LaTe
Using the fractional interaction law to model the impact dynamics in arbitrary form of multiparticle collisions
Using the molecular dynamics method, we examine a discrete deterministic
model for the motion of spherical particles in three-dimensional space. The
model takes into account multiparticle collisions in arbitrary forms. Using
fractional calculus we proposed an expression for the repulsive force, which is
the so called fractional interaction law. We then illustrate and discuss how to
control (correlate) the energy dissipation and the collisional time for an
individual article within multiparticle collisions. In the multiparticle
collisions we included the friction mechanism needed for the transition from
coupled torsion-sliding friction through rolling friction to static friction.
Analysing simple simulations we found that in the strong repulsive state binary
collisions dominate. However, within multiparticle collisions weak repulsion is
observed to be much stronger. The presented numerical results can be used to
realistically model the impact dynamics of an individual particle in a group of
colliding particles.Comment: 17 pages, 8 figures, 1 table; In review process of Physical Review
- …
