1,286 research outputs found
Regular Stringy Black Holes?
We study the first-order corrections to the singular 4-dimensional
massless stringy black holes studied in the nineties in the context of the
Heterotic Superstring. We show that the corrections not only induce a
non-vanishing mass and give rise to an event horizon, but also eliminate the
singularity giving rise to a regular spacetime whose global structure includes
further asymptotically flat regions in which the spacetime's mass is positive
or negative. We study the timelike and null geodesics and their effective
potential, showing that the spacetime is geodesically complete. We discuss the
validity of this solution, arguing that the very interesting and peculiar
properties of the solution are associated to the negative energy contributions
coming from the terms quadratic in the curvature. As a matter of fact, the
10-dimensional configuration is singular. We extract some general lessons on
attempts to eliminate black-hole singularities by introducing terms of higher
order in the curvature.Comment: 5 pages, 2 figure
A stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices
Single organic molecules offer great promise as bright, reliable sources of
identical single photons on demand, capable of integration into solid-state
devices. It has been proposed that such molecules in a crystalline organic
matrix might be placed close to an optical waveguide for this purpose, but so
far there have been no demonstrations of sufficiently thin crystals, with a
controlled concentration of suitable dopant molecules. Here we present a method
for growing very thin anthracene crystals from super-saturated vapour, which
produces crystals of extreme flatness and controlled thickness. We show how
this crystal can be doped with a widely adjustable concentration of
dibenzoterrylene (DBT) molecules and we examine the optical properties of these
molecules to demonstrate their suitability as quantum emitters in nanophotonic
devices. Our measurements show that the molecules are available in the crystal
as single quantum emitters, with a well-defined polarisation relative to the
crystal axes, making them amenable to alignment with optical nanostructures. We
find that the radiative lifetime and saturation intensity vary little within
the crystal and are not in any way compromised by the unusual matrix
environment. We show that a large fraction of these emitters are able to
deliver more than photons without photo-bleaching, making them
suitable for real applications.Comment: 12 pages, 10 figures, comments welcom
Magneto-elastic effects and magnetization plateaus in two dimensional systems
We show the importance of both strong frustration and spin-lattice coupling
for the stabilization of magnetization plateaus in translationally invariant
two-dimensional systems. We consider a frustrated spin-1/2 Heisenberg model
coupled to adiabatic phonons under an external magnetic field. At zero
magnetization, simple structures with two or at most four spins per unit cell
are stabilized, forming dimers or plaquettes, respectively. A much
richer scenario is found in the case of magnetization , where larger
unit cells are formed with non-trivial spin textures and an analogy with the
corresponding classical Ising model is detectable. Specific predictions on
lattice distortions and local spin values can be directly measured by X-rays
and Nuclear Magnetic Resonance experiments.Comment: 4 pages and 4 figure
Tuning the magnetic and structural phase transitions of PrFeAsO via Fe/Ru spin dilution
Neutron diffraction and muon spin relaxation measurements are used to obtain
a detailed phase diagram of Pr(Fe,Ru)AsO. The isoelectronic substitution of Ru
for Fe acts effectively as spin dilution, suppressing both the structural and
magnetic phase transitions. The temperature of the tetragonal-orthorhombic
structural phase transition decreases gradually as a function of x. Slightly
below the transition temperature coherent precessions of the muon spin are
observed corresponding to static magnetism, possibly reflecting a significant
magneto-elastic coupling in the FeAs layers. Short range order in both the Fe
and Pr moments persists for higher levels of x. The static magnetic moments
disappear at a concentration coincident with that expected for percolation of
the J1-J2 square lattice model
Mutual independence of critical temperature and superfluid density under pressure in optimally electron-doped superconducting LaFeAsOF
The superconducting properties of LaFeAsOF in conditions of
optimal electron-doping are investigated upon the application of external
pressure up to kbar. Measurements of muon-spin spectroscopy and dc
magnetometry evidence a clear mutual independence between the critical
temperature and the low-temperature saturation value for the ratio
(superfluid density over effective band mass of Cooper pairs).
Remarkably, a dramatic increase of % is reported for at
the maximum pressure value while is substantially unaffected in the
whole accessed experimental window. We argue and demonstrate that the
explanation for the observed results must take the effect of non-magnetic
impurities on multi-band superconductivity into account. In particular, the
unique possibility to modify the ratio between intra-band and inter-bands
scattering rates by acting on structural parameters while keeping the amount of
chemical disorder constant is a striking result of our proposed model.Comment: 8 pages (Main text: 5 pages. Paper merged with supplemental
information), 5 figure
CXCL12/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axonterminals
The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by -latrotoxin. CXCL12 acts via binding to the neuronal CXCR4 receptor. A CXCL12-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration invivo. Recombinant CXCL12 invivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons invitro. These findings indicate that the CXCL12-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage
Recommended from our members
GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis.
Progressive liver fibrosis is characterized by the deposition of collagen by activated hepatic stellate cells (HSCs). Activation of HSCs is a multiple receptor-driven process in which profibrotic signals are enhanced and antifibrotic pathways are suppressed. Here we report the discovery of a signalling platform comprising G protein subunit, Gαi and GIV, its guanine exchange factor (GEF), which serves as a central hub within the fibrogenic signalling network initiated by diverse classes of receptors. GIV is expressed in the liver after fibrogenic injury and is required for HSC activation. Once expressed, GIV enhances the profibrotic (PI3K-Akt-FoxO1 and TGFβ-SMAD) and inhibits the antifibrotic (cAMP-PKA-pCREB) pathways to skew the signalling network in favour of fibrosis, all via activation of Gαi. We also provide evidence that GIV may serve as a biomarker for progression of fibrosis after liver injury and a therapeutic target for arresting and/or reversing HSC activation during liver fibrosis
Average Heating Rate of Hot Atmospheres in Distant Clusters by Radio AGN: Evidence for Continuous AGN Heating
We examine atmospheric heating by radio active galactic nuclei (AGN) in
distant X-ray clusters by cross correlating clusters selected from the 400
Square Degree (400SD) X-ray Cluster survey with radio sources in the NRAO VLA
Sky Survey. Roughly 30% of the clusters show radio emission above a flux
threshold of 3 mJy within a projected radius of 250 kpc. The radio emission is
presumably associated with the brightest cluster galaxy. The mechanical jet
power for each radio source was determined using scaling relations between
radio power and cavity (mechanical) power determined for nearby clusters,
groups, and galaxies with hot atmospheres containing X-ray cavities. The
average jet power of the central radio AGN is approximately \ergs. We find no significant correlation between radio power, hence
mechanical jet power, and the X-ray luminosities of clusters in the redshift
range 0.1 -- 0.6. This implies that the mechanical heating rate per particle is
higher in lower mass, lower X-ray luminosity clusters. The jet power averaged
over the sample corresponds to an atmospheric heating of approximately 0.2 keV
per particle within R. Assuming the current AGN heating rate does not
evolve but remains constant to redshifts of 2, the heating rate per particle
would rise by a factor of two. We find that the energy injected from radio AGN
contribute substantially to the excess entropy in hot atmospheres needed to
break self-similarity in cluster scaling relations. The detection frequency of
radio AGN is inconsistent with the presence of strong cooling flows in 400SD
clusters, but does not exclude weak cooling flows. It is unclear whether
central AGN in 400SD clusters are maintained by feedback at the base of a
cooling flow. Atmospheric heating by radio AGN may retard the development of
strong cooling flows at early epochs.Comment: ApJ in pres
- …
