3,620 research outputs found
Diffusivity of Ga and Al adatoms on GaAs(001)
The diffusivity of Ga and Al adatoms on the (2x4) reconstructed GaAs(001)
surface are evaluated using detailed ab initio total energy calculations of the
potential energy surface together with transition state theory. A strong
diffusion anisotropy is found, with the direction of fastest diffusion being
parallel to the surface As-dimer orientation. In contrast to previous
calculations we identify a short--bridge position between the two As atoms of a
surface dimer as the adsorption site for Al and Ga adatoms.Comment: 4 pages, 1 figures, to appear in "The Physics of Semiconductors
Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B
A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed
Doppler effects on velocity spectra observed by MST radars
Recently, wind data from mesophere-stratosphere-troposphere (MST) radars have been used to study the spectra of gravity waves in the atmosphere (Scheffler and Liu, 1985; VanZandt et al., 1985). Since MST radar measures the line-of-sight Doppler velocities, it senses the components of the wave-associated velocities along its beam directions. These components are related through the polarization relations which depend on the frequency and wave number of the wave. Therfore, the radar-observed velocity spectrum will be different from the original gravity-wave spectrum. Their relationship depends on the frequency and wave number of the wave as well as the propagation geometry. This relation can be used to interpret the observed data. It can also be used to test the assumption of gravity-wave spectrum (Scheffler and Liu, 1985). In deriving this relation, the background atmosphere has been assumed to be motionless. Obviously, the Doppler shift due to the background wind will change the shape of the gravity-wave power spectrum as well as its relation with the radar-observed spectrum. Here, researcher's investigate these changes
Insightful classification of crystal structures using deep learning
Computational methods that automatically extract knowledge from data are
critical for enabling data-driven materials science. A reliable identification
of lattice symmetry is a crucial first step for materials characterization and
analytics. Current methods require a user-specified threshold, and are unable
to detect average symmetries for defective structures. Here, we propose a
machine-learning-based approach to automatically classify structures by crystal
symmetry. First, we represent crystals by calculating a diffraction image, then
construct a deep-learning neural-network model for classification. Our approach
is able to correctly classify a dataset comprising more than 100 000 simulated
crystal structures, including heavily defective ones. The internal operations
of the neural network are unraveled through attentive response maps,
demonstrating that it uses the same landmarks a materials scientist would use,
although never explicitly instructed to do so. Our study paves the way for
crystal-structure recognition of - possibly noisy and incomplete -
three-dimensional structural data in big-data materials science.Comment: Nature Communications, in press (2018
Quantum size effect in Pb(100) films: the role of symmetry and implication for film growth
We show from density-functional calculations that Pb(100) thin films exhibit
quantum size effect with a bilayer periodicity in film energies, film
relaxations, and work functions, which originate from different symmetry of the
stacking geometry of odd and even layer films. The bilayer periodicity of the
film energy is argued to survive on a semiconductor substrate, which should
allow the growth of ``magically'' thick even-layer Pb(100) films. Furthermore,
it is found that the quantum well states in a simple metal film can be
classified into -bonded and -bonded states, which quantize
independently
Coupled cluster benchmarks of water monomers and dimers extracted from DFT liquid water: the importance of monomer deformations
To understand the performance of popular density-functional theory (DFT)
exchange-correlation (xc) functionals in simulations of liquid water, water
monomers and dimers were extracted from a PBE simulation of liquid water and
examined with coupled cluster with single and double excitations plus a
perturbative correction for connected triples [CCSD(T)]. CCSD(T) reveals that
most of the dimers are unbound compared to two gas phase equilibrium water
monomers, largely because monomers within the liquid have distorted geometries.
Of the three xc functionals tested, PBE and BLYP systematically underestimate
the cost of the monomer deformations and consequently predict too large
dissociation energies between monomers within the dimers. This is in marked
contrast to how these functionals perform for an equilibrium water dimer and
other small water clusters in the gas phase, which only have moderately
deformed monomers. PBE0 reproduces the CCSD(T) monomer deformation energies
very well and consequently the dimer dissociation energies much more accurately
than PBE and BLYP. Although this study is limited to water monomers and dimers,
the results reported here may provide an explanation for the overstructured
radial distribution functions routinely observed in BLYP and PBE simulations of
liquid water and are of relevance to water in other phases and to other
associated molecular liquids.Comment: 10 pages, 8 figures, Submitted to Journal of Chemical Physics,
Related information can be found in http://www.fhi-berlin.mpg.de/th
Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory
We have studied the electronic structure of InN and GaN employing G0W0
calculations based on exact-exchange density-functional theory. For InN our
approach predicts a gap of 0.7 eV. Taking the Burnstein-Moss effect into
account, the increase of the apparent quasiparticle gap with increasing
electron concentration is in good agreement with the observed blue shift of the
experimental optical absorption edge. Moreover, the concentration dependence of
the effective mass, which results from the non-parabolicity of the conduction
band, agrees well with recent experimental findings. Based on the quasiparticle
band structure the parameter set for a 4x4 kp Hamiltonian has been derived.Comment: 3 pages including 3 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory
Non-adiabatic effects play an important role in many chemical processes. In
order to study the underlying non-adiabatic potential-energy surfaces (PESs),
we present a locally-constrained density-functional theory approach, which
enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to
selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs
for defined charge and spin states of the chosen subsystems. The capability of
the method is demonstrated by calculating non-adiabatic PESs for the scattering
of a sodium and a chlorine atom, for the interaction of a chlorine molecule
with a small metal cluster, and for the dissociation of an oxygen molecule at
the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Why is a noble metal catalytically active? The role of the O-Ag interaction in the function of silver as an oxidation catalyst
Extensive density-functional theory calculations, and taking into account
temperature and pressure, affords a comprehensive picture of the behavior and
interaction of oxygen and Ag(111), and provides valuable insight into the
function of silver as an oxidation catalyst. The obtained phase-diagram reveals
the most stable species present in a given environment and thus identifies (and
excludes) possibly active oxygen species. In particular, for the conditions of
ethylene epoxidation, a thin oxide-like structure is most stable, suggesting
that such atomic O species are actuating the catalysis, in contrast to hitherto
proposed molecular-like species.Comment: 4 pages including 3 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
- …
