290 research outputs found
Synchrotron Tomography for the Study of Void Formation in Internal Tin NbSn Superconductors
Synchrotron absorption tomography has been applied for the study of voids formed during the thermal treatment of internal tin NbSn strands. Possible void formation mechanisms and in particular the effect of Sn phase transformations and melting are discussed based on a quantitative void description. Sn melting changes mainly the shape and volume of the individual voids but does not increase the total void volume in the strand
Lowering the activation temperature of TiZrV non-evaporable getter films
In order to reduce the activation temperature of the TiZrV alloy, thin films of various compositions were produced by three-cathode magnetron sputtering on stainless steel substrates. For the characterisation of the activation behaviour the surface chemical composition has been monitored by Auger Electron Spectroscopy (AES) during specific in situ thermal cycles. The volume elemental composition of the film has been measured by Energy Dispersive X-ray spectroscopy (EDX) and the morphology (crystal structure and size of the crystallites) has been investigated by X-ray diffraction (XRD). The criteria indicating the sample quality and its dependence on film structure and chemical composition are presented and discussed
On the formation of voids in internal tin NbSn superconductors
In this article we describe three void growth mechanisms in NbSn strands of the internal tin design on the basis of combined synchrotron micro-tomography and x-ray diffraction measurements during in-situ heating cycles. Initially void growth is driven by a reduction of void surface area by void agglomeration. The main void volume increase is caused by density changes during the formation of Cu3Sn in the strand. Subsequent transformation of Cu-Sn intermetallics into the lower density a-bronze reduces the void volume again. Long lasting temperature ramps and isothermal holding steps can neither reduce the void volume nor improve the chemical strand homogeneity prior to the superconducting A15 phase nucleation and growth
Reduction of gas bubbles and improved critical current density in Bi-2212 round wire by swaging
Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable
property of powder-in-tube conductors is that there is about 30% void space in
the as-drawn wire. We have recently shown that the gas present in the as-drawn
Bi-2212 wire agglomerates into large bubbles and that they are presently the
most deleterious current limiting mechanism. By densifying short 2212 wires
before reaction through cold isostatic pressing (CIPping), the void space was
almost removed and the gas bubble density was reduced significantly, resulting
in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2
K. Here we report on densifying Bi-2212 wire by swaging, which increased JE
(4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire.
This result further confirms that enhancing the filament packing density is of
great importance for making major JE improvement in this round-wire magnet
conductor.Comment: To be published in IEEE Transactions on Applied Superconductivity,
23, xxxxxx (2013
Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires
It is well known that longer Bi-2212 conductors have significantly lower
critical current density (Jc) than shorter ones, and recently it has become
clear that a major cause of this reduction is internal gas pressure generated
during heat treatment, which expands the wire diameter and dedensifies the
Bi-2212 filaments. Here we report on the length-dependent expansion of 5 to 240
cm lengths of state-of-the-art, commercial Ag alloy-sheathed Bi-2212 wire after
full and some partial heat treatments. Detailed image analysis along the wire
length shows that the wire diameter increases with distance from the ends,
longer samples often showing evident damage and leaks provoked by the internal
gas pressure. Comparison of heat treatments carried out just below the melting
point and with the usual melt process makes it clear that melting is crucial to
developing high internal pressure. The decay of Jc away from the ends is
directly correlated to the local wire diameter increase, which decreases the
local Bi-2212 filament mass density and lowers Jc, often by well over 50%. It
is clear that control of the internal gas pressure is crucial to attaining the
full Jc of these very promising round wires and that the very variable
properties of Bi-2212 wires are due to the fact that this internal gas pressure
has so far not been well controlled
Aluminum strand coating for increasing the interstrand contact resistance in Rutherford type superconducting cables
The interstrand contact resistance (Rc) in Rutherford type cables for fast cycling superconducting magnets must be sufficiently high in order to limit eddy current losses. The required value for Rc depends on the cable and magnet geometries and on the foreseen cycling rate, but is typically of the order of one mW. Such values can be reached with a dedicated strand coating or with a resistive internal cable barrier. As a possible candidate Al strand coatings have been tested. For a Rutherford type inner conductor cable of the Large Hadron Collider (LHC) made of Al coated strands Rc values higher than 500 Omega are achieved. The native Al2O3 oxide layer formed at ambient temperature in air is sufficient to reach this high contact resistance. A 6 h-200 °C oxidation heat treatment in air with 100% relative humidity further increases Rc to values above 600 μOmega . Due to the high thermal and mechanical stability of Al2O3 only a relatively moderate Rc drop of about 40 % is obtained during a 190 °C heat treatment under 50 MPa pressure (the so-called curing cycle of the coil insulation) subsequent to the 6 h-200 °C oxidation heat treatment
Influence of the elemental composition and crystal structure on the vacuum properties of Ti-Zr-V non-evaporable getter films
Non-evaporable thin film getters based on the elements of the 4th and 5th columns of the periodic table have been deposited by sputtering. Among the about 20 alloys studied to date, the lowest activation temperature (about 180 °C for a 24-hour heating) has been found for the Ti-Zr-V system in a well-defined composition range. The characterization of the activation behavior of such Ti-Zr-V films is presented. The evolution of the surface chemical composition during activation is monitored by Auger Electron Spectroscopy (AES) and the functional properties are evaluated by pumping speed measurements. The pumping speed characteristics are quite similar to those already measured for commercially available NEG materials, except for the much lower saturation coverage for CO. This inconvenience, which is due to the smooth surface structure of these films, can be counteracted by increasing the roughness of the substrate
Temperature Induced Degradation of Nb Ti/Cu Composite Superconductors
The degradation mechanisms of state-of-the-art Nb-Ti/Cu superconductors are described, based on in-situ synchrotron X-ray diffraction measurements during heat treatment. A quantitative description of the Nb-Ti/Cu degradation in terms of critical current density, Cu stabiliser resistivity and mechanical composite strength is presented. In an applied magnetic field a significant critical current degradation is already observed after a 5-minute 400 °C heat treatment, due to variations of a-Ti precipitate size and distribution within the Nb-Ti alloy filaments. A strong degradation of the strand mechanical properties is observed after several minutes heating above 550 °C, which is also the temperature at which the formation of Cu Ti intermetallic phases is detected. Several minutes heating at 250 °C are sufficient to increase the RRR of the strongly cold work strands inside a Rutherford type cable from about 80 to about 240. Heating for several minutes at 400 °C does not cause a significant conductor degradation in self-field and, thus, leaves enough temperature margin for the electrical interconnection of Nb-Ti/Cu conductors with common low temperature solders
Tensile Properties of the Individual Phases in Unreacted Multifilament NbSn Wires
The room temperature elastic and plastic properties under uniaxial tensile loading of the different phases of an un-reacted, internal-tin process, NbSn wire have been determined by tensile tests of whole wires and of extracted Ta, Nb and Nb alloy filaments, as well as by indentation hardness measurements in metallographic wire cross sections
- …
